l A R T I s A N® Full-service, independent repair center
with experienced engineers and technicians on staff.
‘ e HLNSIEER R OUR We buy your excess, underutilized, and idle equipment

along with credit for buybacks and trade-ins.

YO U r defin il.ive SO U rce sgl;zzﬁﬁqﬁ:;gnj:rii:ic:l?s exactly as you specify.
for quality pre-owned
e Critical and expedited services ¢ Leasing / Rentals / Demos

eq ul p men 1- * In stock / Ready-to-ship * ITAR-certified secure asset solutions

Expert team | Trust guarantee | 100% satisfaction

Artisan Technology Group

(217) 352-9330 I sq|es@qrﬁsqnfg,com I Qrﬁsqmg_com All trademarks, brand names, and brands appearing herein are the property of their respective owners.

Find the Kontron / PEP VM30 at our website: Click HERE


tel:2173529330
mailto:sales@artisantg.com
https://artisantg.com
https://www.artisantg.com/TestMeasurement/70578-1/Kontron-PEP-VM30-Single-Board-Computer
https://www.artisantg.com/TestMeasurement/70578-1/Kontron-PEP-VM30-Single-Board-Computer

Profibus Layer 2 User’s Manual Preface

&

PROFIBUS Protocol Software Layer 2
for MC68302-based Controllers
0S-9/68K
Version 3.12

User’'s Manual
Issue 2

May 20, 1996 © 1995 PEP Modular Computers Page 0-1


Andy
Click here to return


Preface Profibus Layer 2 User’s Manual

REVISION HISTORY
PROFIBUS Protocol Software Layer 2 User’s Manual

Version 3.12
Issue Brief Description of Changes S/W Index Date of Issue
1 First Issue 3.1 June, 1993
1.0.1 Corrections to Chapter 4 3.1 April, 1994
2 Updated to Version 3.12 3.12 February, 1995

This document contains proprietary information of Softing GmbH, translated and reproduced under license by PEP
Modular Computers. It may not be copied or transmitted by any means, passed to others, or stored in any retrieval
system or media, without the prior consent of PEP Modular Computers or its authorized agents.

The information in this document is, to the best of our knowledge, entirely correct. However, PEP Modular
Computers cannot accept liability for any inaccuracies, or the consegquences thereof, nor for any liability arising from
the use or application of any circuit, product, or example shown in this document. PEP Modular Computers rely on
the originator of the Software for information contained in this manual and consequently cannot ensure that the
information is correct or contains changes which PEP Modular Computers have not been informed of.

PEP Modular Computers reserve the right to change, modify, or improve this document or the product described
herein, as seen fit by PEP Modular Computers without further notice.

Page 0-2 © 1995 PEP Modular Computers May 20, 1996




Profibus Layer 2 User’s Manual Preface

PEP Modular Computers® Two Y ear Limited Warranty

We grant the original purchaser of PEP products the following hardware warranty. No other warranties that may be
granted or implied by anyone on behalf of PEP are valid unless the consumer has the express written consent of
PEP Modular Computers.

PEP Modular Computers warrants their own products (excluding software) to befree from defectsin workmanship
and materials for a period of 12 consecutive months from the date of purchase. This warranty is not transferable nor
extendible to cover any other consumers or long term storage of the product.

This warranty does not cover products which have been modified, altered, or repaired by any other party than
PEP Modular Computers or their authorized agents. Furthermore, any product which has been, or is suspected of
being damaged as a result of negligence, misuse, incorrect handling, servicing or maintenance; or has been damaged asa
result of excessive current/voltage or temperature; or has had its serial number(s), any other markings, or parts thereof
altered, defaced, or removed will aso be excluded from this warranty.

A customer who has not excluded his eligibility for this warranty may, in the event of any claim, return the product at
the earliest possible convenience, together with a copy of the original proof of purchase, a full description of the
application it is used on, and a description of the defect; to the original place of purchase. Pack the product in such away
as to ensure safe transportation (we recommend the original packing materials), whereby PEP undertakes to repair or
replace any part, assembly or sub-assembly at our discretion; or, to refund the original cost of purchase, if appropriate.

In the event of repair, refund, or replacement of any part, the ownership of the removed or replaced parts reverts to
PEP Modular Computers, and the remaining part of the original guarantee, or any new guarantee to cover the
repaired or replaced items, will be transferred to cover the new or repaired items. Any extensions to the original guarantee
are consdered gestures of goodwill, and will bedefined in the "Repair Report” returned from PEP  with the repaired or
replaced item.

Other than the repair, replacement, or refund specified above, PEP Modular Computers will not accept any liability
for any further claims which result directly or indirectly from any warranty claim. We specifically exclude any claim for
damage to any system or processin which the product was employed, or any loss incurred as a result of the product not
functioning at any given time. The extent of PEP Modular Computers liability to the customer shall not be greater
than the original purchase price of the item for which any claim exists.

PEP Modular Computers makes no warranty or representation, either express or implied, with respect to its
products, reliability, fitness, quality, marketability or ability to fulfill any particular application or purpose. As aresult,
the products are sold "asis,” and the responsibility to ensure their suitability for any given task remains the purchaser's.

In no event will PEP be liable for direct, indirect, or consequential damages resulting from the use of our hardware or
software products, or documentation; even if we were advised of the possibility of such claims prior to the purchase of, or
during any period since the purchase of the product.

Please remember that no PEP Modular Computers employee, dealer, or agent are authorized to make any
modification or addition to the above terms, either verbally or in any other form written or electronically transmitted,
without consent.

May 20, 1996 © 1995 PEP Modular Computers Page 0-3



Preface Profibus Layer 2 User’s Manual

TABLE OF CONTENTS

Page

1. Introduction . . . . . . . 1-1
L S0P . o o 1
1.2 Documentation REFEreNCES . . . . . . . oo 1
1.3 Ordering Information . . ... .. 2
2. Function and Architecture . . . . . . . e 2-1
2.1 BasiC Properties . ... 1
2.2 Protocol ArchiteCture . . . ... ... 1
Figure 2.2.0.1: PROFIBUS Protocol Architecture ... ....... ... ... . . ... .. 2

2.3 Layer 1 (Physical Layer) ... ..o e 3
Table 2.3.0.1: RS485 Transmission Technique ... ...... ... ... . ... .. . .. .. . .. .... 3

24 Layer 2 (Data Link Layer) . ... ... 4
240 OVEIVIBW o .ottt e e e e e e e e e 4
Table2.4.1.1 Data Transmission Servicesof Layer 2 . ........ ... ... 5

Table 2.4.1.2 Technical Featuresof Layersland2 ............ ... .. 6

2.4.2 Implementation OVEIVIEBW . . . . . . e 6
2.4.3 Resource Circulation . . ... ... 7

3. Hardware Configuration . . . . . . . . . e 3-1
3.1 PROFIBUS Controllers . . .. ..o e e e e e 1
Table 3.1.0.1: CPU and Controller Characteristics . ... ........ ... 1

3.2 The MC68302 IMP (Integrated Multiprotocol Processor) .. .......... ... 2
320 OVEIVIBW o .ot e e e e e e 2
3.2.2 MiCroprogramming . . . .o v it e e e 2
3.2.3 Using Internal Function Groups of the MC 68302 .. ... .. ... ... ... . ... 2
3.2.4 External Wiring of the MCB8302 . . . ... .. .. 3

3.3 PROFIBUS Physical Layer . . ... ... e e e e e 4
331 VErSiON L o 4
Table 3.3.1.1 Electrical Characteristics . . ... ... e 4

Figure 3.3.1.2 Repeater inLinear BusTopology . ......... ... .. .. ... 6

Table 3.3.1.3 Connector Pin Assignmentsand Layout ... ................ .. ....... 7

3.4 SC-485F Serial Communications Controller (SCC) Configuration ... .................... 8
4. Software Architecture . . . . . . . . . 4-1
4.1 OS9 File System and Architecture . .. ... ... . . . e 1
Figure4.1.0.1: OS9 Software Architecture . .. ... .. e 6

4.2 PROFIBUS InStallation . .. ... ... e e 7
4.2.1 Starting PROFIBUS . . . .. 7
4.2.2 Running PROFIBUS on aVM30 System . .. .. ... i e 8
4.2.3 Running PROFIBUS on aVIUC System . . ... ... e e 9
4.2.4 Testing the PROFIBUS Connection . ... .. .. i e e e e e 10

4.3 Intercommunication Interface . . ... .. ... . 11
4.4 PROFIBUS Library “pbl2hlf.l” . . 12
4.4.1 General FUNCLIONS . . . .o o e e e e 13
0pen_PROFI . . . 13

Close PROFI . ... 13

4.4.2 DataTransfer FUNCLIONS . . . . .. . e 14
open_JOB (Obsolete) . . .. 15

0pEN JOB S .. 17
open JOB R SDX .. 19
0pen_JOB R SRD .. ... 21

CoSE JOB ... e 23

Page 0-4 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Preface

SENA S A . 24
SENA SN . oo 25
SENA SR . .. 26
SeNd RPLUPD S .. 28
Send_ RPLUPD M L. 29
ready IND . .o 30
reCaIVE IND . . 30
rEEase IND ... 32
4.4.3 Management FUNCLIONS . . . . . . .. e e e e 33
L L AS L 33

et CT R oo 34

et TRR .o 35
enable EVENT ... 36
disahle EVENT ... 37

45 FDL Interface Library “pbl2If.1” . . . e 39
451 Function fdl_open ... .. .. 39
452 Functionfdl_req . ... .. 39
453 Functionfdl_con ind . ... ... . 39
454 Functionfdl_con_ind_poll . ... ... . . . . . 40
455 Function fdl_close ... ... . 40
A5.6 FDL SeIVICES . . ittt 40
Figure 4.5.6.1: SDA SErVIiCe ... oottt 42
Figure 4.5.6.2: SDN SErVICE . .. ittt e e e e e 42
Figure 4.5.6.3: SRD SErVIiCe .. ..o i it e 43
Figure4.5.6.4 Sart of CSRD SErViCE . ... v vttt e e e e e 44
Figure 4.5.6.5 ENd of CSRD SErViCE . . ..ottt e e e e e 45
SDA (Send Datawith Acknowledge) Request . . ... ... ... i e 46
SDA (Send Datawith Acknowledge) Confirmation . ............. ... ... .. ......... 48
SDA (Send Data with Acknowledge) Indication ............... ... .. .. ... ... 50
SDN (Send Datawith No Acknowledge) Request ... ... ... . i 52
SDN (Send Data with No Acknowledge) Confirmation .. ........................... 54
SDN (Send Datawith No Acknowledge) Indication . ............. ... ... .. ......... 56
SRD (Send and Request DatawithReply) Request . ... ... .. ... ... 57
SRD (Send and Request Data with Reply) Confirmation .. .......................... 59
SRD (Send and Request Datawith Reply) Indication .. ............................ 61
REPLY _UPDATE ReqUESt . . . . oot e e e e e e 63
REPLY_UPDATE Confirmation . . ... ... ...ttt 65
SEND_UPDATE ReQUESE . . . . ittt e e e e e e 67
SEND _UPDATE Confirmation . .. .. ... ... ..t e 69
LOAD_POLL_LIST REQUESE . . oottt e e e e e e e e e 71
LOAD_POLL_LIST Confirmation . .. .. ... ...t e 73
Cyclic Send and Request Data with Reply (CSRD) Confirmation ...................... 74
POLL_ENTRY ReQUESE . . . .ot e e e e 76
POLL_ENTRY Confirmation . ... ... . e e e e 77
DEACT _POLL_LIST REqUESE . . o o ot e e e e e 78
DEACT POLL_LIST Confirmation . .......... ...t 79
AB5.7 FMA SEIVICES . o ottt e 80
FMAZ RESET ReQUESE . . . .ttt e e e e e 82
FMA2 RESET Confirmation ... ... ... ... e e 83
FMA2 SET BUSPARAMETERRequest . . ... ... e 84
FMA2_SET_BUSPARAMETER Confirmation . ............. ... 86

FMA2 CHANGE_BUSPARAMETERRequest . ........ ...t 87
FMA2_CHANGE_BUSPARAMETER Confirmation . .................iivoou... 89
FMA2_SET_STATISTIC_CTR REQUESL . . . . oottt e e e e e 90
FMA2_SET_STATISTIC_CTR Confirmation . ... ........ ...t 91
FMA2 READ BUSPARAMETER ReqUeSt .. ... ... . i 92
May 20, 1996 © 1995 PEP Modular Computers Page 0-5



Preface Profibus Layer 2 User’s Manual

FMA2 READ _BUSPARAMETER Confirmation ...............
FMA2 READ_STATISTIC CTRRequest . ..................
FMA2_READ_STATISTIC_CTR Confirmation . ..............
FMA2 READ TRRReqUESt ... ...t
FMA2 READ_TRR Confirmation . .......................
FMA2 READ LASReqUESt ... ...t
FMA2 READ _LAS Confirmation . ........................
FMA2 READ GAPLISTRequest . ...........iiiiein...
FMA2 READ_GAPLIST Confirmation . ...................
FMA2 EVENT Indication ............. ..ot
FMA2 IDENTReqQUESE . . .. oot e e e e
FMAZ2_IDENT Confirmation . ...........................
FMA2_LSAP STATUSRequest . ...,
FMA2 LSAP STATUS Confirmation . .....................
FMA2 LIVELISTRequest . .........oiiiiiiinen
FMA2 LIVELIST Confirmation . .........................
FMA2 ACTIVATE SAPRequest . ............iiiniuinn..
FMA2 _ACTIVATE SAPConfirmation .....................
FMA2_ACTIVATE RSAPRequest . ............ouuinn.
FMA2_ACTIVATE_RSAP Confirmation . ...................
FMA2_DEACTIVATE_SAPRequest .......................
FMA2 DEACTIVATE_SAPConfirmation ...................
4.5.8 Servicesfor the Administration of the Resources ... ...........
WAIT_FOR_ FMA2 EVENTRequest ...............co.v....
WAIT_FOR_FMA2 _EVENT Confirmation ...................
WITHDRAW_EVENTRequest . ...,
WITHDRAW_EVENT Confirmation .. .....................
PUT_RESRC TO FDLRequest ........... ...,
PUT_RESRC TO FDL Confirmation ......................
WITHDRAW_RESRC FROM_FDL Request . ................
WITHDRAW_RESRC_FROM_FDL Confirmation .............
459 ParameterizingLayer2 . ... .. .. ..

5. Release Notes . . . . . . . . e
Appendix A Status Values . . . . . . . . ..
Appendix B Definition of Constants . . ... ... ... ...........
Appendix C. Type Definitions . . . .. . .. .. .. ... ...

Appendix D. Demo Examples . ... ... .. .. . ... .. ... . ...

Appendix SCC. Serial Communications Controller

.......... A-1

.......... B-1

.......... C-1

.......... D-1

Page 0-6 © 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 1 Introduction

1. INTRODUCTION

This manual describes the implementation of the PROFIBUS layer 2 protocol software running under the realtime
kernel/operating system OS-9 and PEP's MC68302 controllers (i.e. IUC/ VIUC/ VM30/ SMART 1/0).

0OS-9 extensions allow programming in the usual way. The layer 2 library allows the user to use PROFIBUS services
without complex programming sequences, reducing the time to get the layer 2 application to a maximum.

The direct connection to the OS-9/NFM (Network File Manager) supports features such as transparent file access, loading
of tasks, remote login and remote source level debugging. With these features, application and communication tasks
running on an intelligent 1/0 node can be tested and debugged from a host computer (e.g. aVME system).

The topics described in this manual include:

» Functional description of the software architecture

» Guidance for installation, hardware adjustment and start up of the communications software
* Descriptions of the PROFIBUS objects and services

* Description of the communication interface and the layer 2 libraries

* OS9 implementation

* Application example

1.1 Scope
This implementation is based on the PROFIBUS Standard DIN 19245, Part 1 from April 1991.
The implementation encompasses:

* all communication services,

« all (including the options) management services,

» multi-master functionality (for up to 127 participants),

« full address expansion (64 Service Access Points, 64 segment addresses).

1.2 Documentation References

v PROFIBUS Standard, DIN 19245 Part 1, Beuth Verlag GmbH Berlin, April 1991
12/ PROFIBUS - the process fieldbus standard in industrial communications,
PROFIBUS Nutzerorganisation e.V ., Herseler Strasse 31, W-5040 Wesseling, Germany
13/ MC68302, Integrated Multiprotocol Processor User's Manual, Motorola Inc. 1990
14/ M68000 Family, Part 1 - Principles and Architecture, te-wi Verlag GmbH Munich
5/ Documentation PROFIBUS Microcode, Motorola Inc., March 1991
16/ PROFIBUS - the Fieldbus for Industrial Automation, Carl Hanser Verlag Munich and Vienna
17/ 0S-9 Advanced System Software, Microware Systems Corporation, lowa, U.S.A
18/ SMART I/O, [V]IUC, VM30 User’s Manual, PEP Modular Computers, W-8950 Kaufbeuren, Germany
19/ Using OS-9/NET, Microware Systems Corporation, lowa, U.S.A

May 20, 1996 © 1995 PEP Modular Computers Page 1-1



Chapter 1 Introduction Profibus Layer 2 User’'s Manual

1.3 Ordering Information

Name Description Order Number
OS9OPFB-STARTER-II Starter kit, complete package to support 2180-432 /1& Old
two PROFIBUS nodes 1662 New (since Nov. 94)
PROFI-LI1Z-L2+L7 PROFIBUS layer 2 & 7 quantity licenses | 2180-432 Old
1666 New (since Nov. 94)
PROFI-L1Z-L2 PROFIBUS layer 2 only licenses 2180-433 Ood
1675 New (since Nov. 94)

Page 1-2 © 1995 PEP Modular Computers May 20, 1996




Profibus Layer 2 User’s Manual Chapter 2 Function and Architecture

2

2. FUNCTION AND ARCHITECTURE

2.1 Basic Properties

PROFIBUS defines the technical and functional characteristics of a serial fieldbus which interconnects distributed digital
field devicesin the low (sensor/actuator level) up to the medium (cell level) performance range. The system contains
Master and Save devices.

A Master is able to control the bus, i.e. it may transfer messages without remote request when it has right to access the
bus. Masters are called active stations in the PROFIBUS protocol. Typical masters are PLCs, CNCs and Cell
Controllers.

Save devices are simple peripheral devices. Typical slaves are sensors, actuators and transmitters. They attain no bus
accessrights, i.e. they may only acknowledge received messages, or at the request of a master, transmit messages to that
master. Slaves are also called passive stations in the PROFIBUS protocol. Slaves need only a small part of the protocol
and therefore the protocol is especially simple to implement.

The data transmission technique may be adapted to the intended operation area. All variants use the same protocol for
medium access and transmission and have the same functions at the interface to the common Application layer.

PROFIBUS includes a powerful layer 7 which contains an optimized interface to layer 2. The logical addressing at the
user level enables efficient transmission and fast processing in the end devices.

The PROFIBUS standard defines a comprehensive functionality. Subsets of this functionality are specified in profiles for
various application aress.

2.2 Protocol Architecture

PROFIBUS includes definitions for all communication layers of the OSl (Open Systems Interconnection) Reference
Model. The architecture of the PROFIBUS protocol is shown in the Figure below.

The Layers 1 and 2 specify the transmission medium, the physical and electrical properties of the interface, the medium
access protocol and the execution of the layer 2 services with their transmission protocols and protocol data units.

Thelayers 1 and 2 were published as a pre-standard in DIN V 19 245 Part 1 in 1988. Before the final publication asa
standard in December 1990 by the Deutsche Elektrotechnische Kommision (DKE), the applicability of the PROFIBUS
transmission technique had been substantiated by pilot implementations and extensive tests.

Thelayers 3to 6 are not explicit. The functions of these layers that are necessary for the application field of PROFIBUS
are combined in the Lower Layer Interface (LLI). The LLI is part of layer 7.

Layer 7 (application protocol) provides the communication functions to the user. They are defined in the Fieldbus
Message Specification (FMS). FMS realizes the interface to the application process and provides the PROFIBUS user
with avariety of powerful application services to access the communication objects of an application process.

May 20, 1996 © 1995 PEP Modular Computers Page 2-1



Chapter 2 Function and Architecture Profibus Layer 2 User’'s Manual

Figure 2.2.0.1: PROFIBUS Protocol Architecture

APPLICATION PROCESS

PROFIBUS FMS-Services

Application Layer Interface (ALI)

Fieldbus Message Specification (FMS)
Lower Layer Interface (LLI)

Presentation Layer

Session Layer

Transport Layer

Wk 01O

Network Layer

Fieldbus Data Link (FDL)
Media Access Control (MAC)

PROFIBUS - Transmission Medium

In addition, the PROFIBUS protocol provides Network Management functions.

The functions of layer 7 include a subset of the MM S functions (MMS, Manufacturing Message Specification) of the
MAP Protocol. The complex functions of MM S are optimized for the requirements at the fieldbus level. Additional
fieldbus specific functions for the administration of the communications objects were defined.

Page 2-2 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 2 Function and Architecture

2.3 Layer 1 (Physical Layer)

The area of application of afieldbus system is substantially effected by the selection of the transmission medium and the
physical bus interface. Besides the requirements on the data integrity the costs of provision and installment of the cable
are of critical significance.

Hence the PROFIBUS standard defines different versions of the transmission technique under retention of a unique
medium access protocol. The RS-485 interface was defined as the base version of the transmission technique.

The US standard fulfills the user requirements on the transmission technique in the areas of discrete part manufacturing,
building automation and drive control, as well asin most parts of process control.

In addition to the RS-485 specification, PROFIBUS defines clearly al variable interface parameters, the connector and the
bus termination.

The following table defines the basic properties of the RS-485 transmission technique.

Table 2.3.0.1: RS-485 Transmission Technique

Basic Properties of the RS-485 Transmission Technique

Network topology: Linear bus, terminated at both ends with the line impedance. Stubs are possible
Medium: Twisted Pair cable. Shielding may be omitted depending on the application
Number of Stations: 32 Stations without repeaters. When using repeaters extendible to 127
(including 5 repesaters)
Bus length: max. 1200m, with repeaters extendible up to 4800m depending on the transmission speed
Transmission speed: 9.6 19.2 93.75 187.5 and 500 kbit/s selectable
Connector: 9-Pin D-Sub Connector

May 20, 1996 © 1995 PEP Modular Computers Page 2-3



Chapter 2 Function and Architecture Profibus Layer 2 User’s Manual

2.4 Layer 2 (Data Link Layer)

2.4.1 Overview

The second layer of the OSI Reference Model realizes the functions of the medium access control and data integrity as
well as the execution of the transmission protocols and messages. Layer 2 in PROFIBUS is designated as Fieldbus Data
Link (FDL).

The Medium Access Control (MAC) defines when a station may transmit data. The MAC has to ensure that only one
station has the right to transmit data at any time.

The PROFIBUS protocol has taken two essential requirements for the Medium Access Control into account:

In the case of communication between complex automation components (Masters) with equal rightsit has to ensure that
each of these stations gets sufficient opportunity to execute its communication tasks within a defined time interval.

In the case of communication between a complex automation device and associated simple peripheral devices (Slaves) it
must realize a cyclic real time data exchange as simply as possible.

Therefore, the PROFIBUS medium access protocol includes the token passing method for the communication between
complex stations (Masters) and additionally the Master-Save method for the communication of the complex stations with
the simple peripheral devices (Slaves). This combined method is called hybrid medium access.

The token passing method ensures, by means of atoken, the assignment of the bus access right within a precisely defined
time interval. The token message is a special telegram to transfer the right for transmission from one Master to the next
Master. It iscirculated in a (configurable) maximal token rotation time between all Masters. In the PROFIBUS protocol
the token passing method is used only between the complex stations (Masters).

The Master-Slave method allows the Master (active station) that currently owns the right for data transmission to
communicate with the associated Slave devices (passive stations). Hereby the Master has the possibility to fetch
messages from the Slaves and to transmit messages to the Slaves.

Since in the field area both medium access methods have advantages depending on the application, the hybrid medium
access method of PROFIBUS can redlize:

* a pure Master-Save system
* a pure Master-Master system (token passing)
* a system with a combination of both methods

For a certain time after an active station receives the token message it is allowed to exercise the Master function on the
bus and communicate with all Slave stations in a Master-Slave communication relationship and with all Master stations
in aMaster-Master communication relationship.

A token ring means the organizational chain of active stations building a logical ring with their station addresses. In this
ring the token, the medium access right, is circulated from one Master to the next Master in a defined sequence (increasing
addresss).

In the start-up phase of the bus system the task of the Medium Access Control (MAC) of the active stations is to detect
the logical assignment and to establish the token ring. In the operational phase defective or switched-off active stations
have to be eliminated from the ring and new active stations have to be included in the ring. These features and also the
recognition of defectsin the transmission medium and the tranceiver, the detection of errorsin the station addressing (e.g.
multiple usage) or in the token passing (e.g. multiple token or lost token) are characteristic for the PROFIBUS Medium
Access Control.

Page 2-4 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 2 Function and Architecture

Another important task of Layer 2 is data integrity. The PROFIBUS Layer 2 frame formats ensure a high data integrity.
All frames have Hamming Distance HD=4. Thisis achieved by applying the International Standard |EC (International
Electrotechnical Commission) 870-5-1 (choice of specia start and end delimiters for the telegrams, slip free
synchronization, parity bit, control byte ...).

Basically, the PROFIBUS Layer 2 operates connectionless. In addition to the logical peer-to-peer data transmission it
provides broadcast and multicast communication.

Broadcast communication means that an active station sends an unconfirmed message to all other stations (Masters and
Slaves). Multicast communication means that an active station sends an unconfirmed message to a group of stations
(Masters or Slaves).

Layer 2 provides data transmission servicesto Layer 7. Three services for acyclic data transmission and one service for
cyclic transmission are provided (see Table 2.4.1.1). In addition to the data transmission services layer 2 provides services
for Network Management (FMA 1/2).

All layer 2 services are executed at the interface to the LLI through Service Access Points (SAPS). Layer 7 uses these
Service Access Points for the addressing of the logical communication relationships. In the active and passive stations
multiple SAPs are allowed simultaneously. One distinguishes between source (SSAP) and destination (DSAP) Service
Access Points.

Table 2.4.1.1 Data Transmission Services of Layer 2

Data Transmission Services of Layer 2

Send Data With Acknowledgement (SDA) acyclic
Send and Request Data With Reply (SRD) acyclic
Send Data With No Acknowledge (SDN) acyclic
Cyclic Send And Request Data With Reply (CSRD) cyclic

May 20, 1996 © 1995 PEP Modular Computers Page 2-5




Chapter 2 Function and Architecture Profibus Layer 2 User’s Manual

The technical features of layers 1 and 2, as specified in DIN 19245 Standard Part 1 is shown below.

Table 2.4.1.2 Technical Features of Layers 1 and 2

Technical Features of Layers 1 and 2, DIN 19245 Part 1

Transmission technique corresponding to RS 485, twisted pair, galvanic separation and shielding optional
Further transmission techniques (Fiber optics and Intrinsic Safety) are in preparation

Line length maximal 1200m, with repeaters extendible up to 4800m (depending on the transmission rate)
Transmission rate selectable from 9.6 to 500 kbits/s

Total max. 127 stations (active and passive)

NRZ Bit coding (non return to zero)

Asynchronous transmission, half-duplex, sip protected synchronization of the UART characters
Bus access hybrid, combinable decentral and central access

Three acyclic and one cyclic data transmission service

Multi- and broadcast messages and management services

Frame formats according to IEC-870-5-1

Dataintegrity with Hamming Distance HD=4

Two message priorities

2.4.2 Implementation Overview

The structure of the layer 2 protocol software reflects the division of the layer 2 (Fieldbus Data Link, FDL) in both sub-
layers:

* FLC (Fieldbus Link Control, Transfer Control)
* MAC (Medium Access Control, Bus Access Control)

The FLC sub-layer is accessed via a procedural interface from the layer 2 user. Thisinterface isimplemented as arequest
block interface, therefore the layer 2 user has to provide memory for the telegrams that are to be transferred and for the
service parameters. Thereafter the layer 2 user hands over these data structures to the layer 2 by function request or, in the
same way, the incoming confirmations or indications can be periodically checked via a cyclic function request.

During requests the FL C sub-layer checks the calling parameter, prepares the telegram and passesit to the MAC sub-
layer. During confirmations and indications it accepts the returned telegram and carries out the receipt parameters.

The MAC sub-layer, on the other hand, is completely interrupt controlled. The token protocol is also processed when, for
example, the application has entered an endless|oop (i.e. as aresult of a programming error). The relatively complex
access protocol is used as machine condition, where condition changes are triggered using interrupts. The various timers
and/or the receipt or transmission of whole or part telegrams act as interrupt sources.

The FLC and MAC sub-layers communicate via various organizational structures contained in memory.

Page 2-6 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 2 Function and Architecture

2.4.3 Resource Circulation

For the hand-over of the service parameters, but most importantly for the storage of the received telegrams, a memory
areamust be allocated in the form of parameter blocks and telegram buffers. These memory areas are all ocated according
to the service call and described as resources. The number and order of necessary resources depends upon the service call
dynamics, so it would be awaste to hold them permanently in layer 2 since their stored size and order would only be
optimized for one particular type of service call and all other calls would make excessive demands upon the memory.

The user of layer 2 (FDL-User) therefore provides these resources on demand and according to the called service.

Request - Confirmation

For the follow-up action (request-confirmation), i.e when the FDL-User has initiated a service request and then awaits a
confirmation, acycle of resourcesis created. The resources provided during the request remain in the FDL until the receipt
of the confirmation and only then are they returned to the FDL-User. Thereafter they are available for use by other
services. Typical examplesare SDA, SDN and SRD services.

The only time this standard procedure is not applied is when the resources are to remain longer in the FDL, i.e. when
they represent the Poll-List or a Service Access Point. In this event there is always a complimentary service that calls
these resources back. A typical example isthe service pair LOAD_POLL_LIST and DEACT_POLL_LIST or
ACTIVATE_SAP and DEACTIVATE_SAP.

May 20, 1996 © 1995 PEP Modular Computers Page 2-7



Chapter 2 Function and Architecture Profibus Layer 2 User’s Manual

The update services take up an intermediate position. Here a pause must be made instead of on the next SRD cycle,
whereby the buffer arrives and is then transferred by the update call nin the FDL after the confirmation call n+1 isfirst
sent back.

Indications

No complimentary primitive exists in the layer 2 of the PROFIBUS protocol for primitive service indication in order to
stop the resource cycle. A special service call that is not normally specified must therefore beinstalled in the FDL in
order to take care of the necessary indications. The details of the planned services are described in section 4.5 of this
manual.

It isthe responsibility of the FDL-User to ensure that enough entry buffers and parameter blocks are steadily made
availableto the FDL in order to work on the received messages. These resources can be transferred on their own or
interlinked in packages. The resources must be classified as Service Access Points or Poll-List entries. If no entry buffer
isavailable for aparticular Service Access Point or Poll-List entry, then the received telegram is not further worked on.

The classification of entry buffers to Service Access Points or Poll-List entries in the available implementation is SAP
referenced. If in adistinct Service Access Point five entry buffers, for example, are transferred then exactly five telegrams
can be received. The telegrams are then physicaly filed away in these five buffers using a copy action.

CSRD - Presentation of the Problem

The actions within layer 2 are normally embedded in unordered service sequencesin higher levels. Especially in
collaboration with level 7 of the PROFIBUS protocol, the resource circulation through the lower level interface of level 7
is controlled in such away that no bottlenecks can occur.

Due to the normally bidirectional structure of the communications relationships (request-response), the installment of the
transferred requests can be controlled by the installments of the related confirmations, and indirectly through the
communications rel ationship, the installments of the indications.

The CSRD service of layer 2, however, breaksthrough the principal s of the resource circulation, in that at the start of the
Poll-List anon realizable flood of CSRD confirmations are made from the master and SRD confirmations made from the
save.

It is therefore recommended that in order to take advantage of the normal planned possibilities of the CSRD only SRD
cycles containing useful data are worked on .Thisis possible through the input of “DATA” in the confirm_mode
parameter of the LOAD_POLL_LIST service or in the indication_mode parameter of the FMA2 RSAP_ACTIVATE
service.

Page 2-8 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 3 Hardware Configuration

3. HARDWARE CONFIGURATION

3.1 PROFIBUS Controllers

3

The hardware is based on PEP s family of 68302 IUCs (Intelligent Universal Controllers) and CPU modules. Different
hardware platforms fulfill the various performance requirements (1.5 - 10 MIPS) and configurations such as VMEbus
based systems and busless intelligent 1/0 nodes.

Table 3.1.0.1: CPU and Controller Characteristics

Product | CPU/ [MIPS| MIPS| CMOS RAM ROM/ |Serial| MISC | Power | Max.
FPU |Speed| Speed RAM Backup | EEPROM | 1/O |Features| (W) Temp.
(Max)| (MHz)| (MByte) (M ax) Typ. (°C)
VM30 | 68EC030| 10 25/40 | 4/8/16/32 | VME or 2MB/ 2+1 | Locd I/O 45 -40
68882 25/40 | DRAM Battery na Extension to +85
68302 16/20 | 0.25/1/2 (CXC)
SRAM
VSBC-4| 68302 15 | 16/20 0.5/1 VME or 2MB/ 2+1 | Locd I/O 35 -40
SRAM Battery 64 KB (CXC) to +85
2/4
PSRAM*
VIiUC 68302 15 | 16/20 0.5/1 VME or 2MB/ 2+1 | Locd I/O 35 -40
SRAM Battery 64 KB Extension to +85
2/4 (CXC)
PSRAM* RTC,
Waetchdog
IlucC 68302 15 | 16/20 | 0.25/0.5/1 | CXCor 1MB/ 2+1 | Locd I/O 15 -40
SRAM Battery 64 KB Extension to +85
2/4 (CXC)
PSRAM* RTC,
Waetchdog
SMART| 68302 15 20 | 0.25/0.5/1 [ CXCor 1MB/ 2+1 | Locd I/O 15 -40
/0 SRAM Battery 64 KB Extension to +85
2/4 (CXC)
PSRAM* RTC,
Waetchdog
* PSRAM: Pseudo Static RAM
May 20, 1996 © 1995 PEP Modular Computers Page 3-1




Chapter 3 Hardware Configuration Profibus Layer 2 User’s Manual

3.2 The MC68302 IMP (Integrated Multiprotocol Processor)

3.2.1 Overview

The MC68302 contains a 68000 core together with a RISC processor, the latters main objective being the
communication e.g. the support of the various assigned protocols.

A short overview of the main function groups that are advantageous in the employment of this controller in the
realization of the PROFIBUS protocol is presented below:

System Integration Block (SIB)

* Independent Direct Memory Access (IDMA)

« Interrupt controller with two types of operation

« Parallel 1/0 ports, partly with interrupt generation
« 2 timers and a watchdog-timer

 On-chip 1152 byte dual-port RAM

Communications Processor (CP)

* Programmable RISC processor

* 3 Serial Communication Controllers (SCC 1 - 3)
* 6 Serial DMA channels for SCC 1-3

» SCP for synchronous communication

* 2 Serial Management Controllers (SMIC)

3.2.2 Microprogramming

The MC68302 RISC processor can run amicroprogram that isfirst loaded into the internal dual-port RAM (DP-Ram).
Here the user part of the DP-Ram (576 byte) is available for a microprogram. Motorola Inc. has devel oped a program that
supports the PROFIBUS protocol. The main advantage of the microprogram support is due to the fact that the RISC

processor takes over the time consuming actions during the running of the bus protocol. Through this the demand on the
68000 processor is lowered, leaving the application program with more computing power available for other tasks.

3.2.3 Using Internal Function Groups of the MC 68302

The following internal resources of the MC 68302 are used:

Dual-Port-Ram

The PROFIBUS microcode is loaded into the user part of the dual-port RAM. Nothing more is available to the user.
Serial Transmission

The PROFIBUS protocoal is realized with the help of one of the three “Serial Communication Controllers’ (SCC). The
cablesare;

* RxD - Receive cable
» TXD - Transmission cable
» RTS- Switches the RS485 driver during transmission

Page 3-2 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 3 Hardware Configuration

Timer

In order to operate the PROFIBUS layer 2 protocol software the two internal timers named Timer 1 and 2 are required. If
the PROFIBUS layer 7 is employed as well asthe PROFIBUS layer 2, afurther timer named LLI (Lower Layer Interface
of the layer 7) must be prepared. This timer is achieved with the watchdog-timer of the MC 68302.

Interrupt Sources

» Serial Communication Controller
eTimer 1

e Timer 2

e Timer 3 (LLI timer)

3.2.4 External Wiring of the MC68302

The demand on external hardware can be minimized due to the PROFIBUS microcode program. The timers used in the
realization of the PROFIBUS protocol easily reflect, without exception, the internal timers of the MC 68302. The
remaining hardware expenditure limitsitself on an external quartz oscillator running at 24 MHz (9.6 to 500 kBaud). The
setting of the baud rate used is required to have an accuracy of 0.3%.

The output of the quartz oscillator leads to an input “TIN”. It serves the baud rate generator as clock input. Furthermore
the 68302 module has to be equipped with an RS485 piggyback. Together with the transmission and receive cables of the
SCC, the signal “RTS’ isrequired in order to activate the driver components during a transmission request.

May 20, 1996 © 1995 PEP Modular Computers Page 3-3



Chapter 3 Hardware Configuration Profibus Layer 2 User’s Manual

3.3 PROFIBUS Physical Layer

In order to cover avariety of requirements regarding topology, line length, number of stations, data transfer rate and
protection against environmental influences, several physical layer versions are supported.

Version 1 encompasses NRZ bit encoding combined with EIA RS-485 signalling, targeted to low cost line couplers,
which may or may not isolate the station from the line (galvanic isolation); line terminators are required, especially for
higher data transfer rates (up to 500 kbit/s).

It isintended to specify further versions, tailored to the following requirements:

» Extended line lengths, line couplers which consume less power and which reduce the influence of defective
stations on bus operation, explosive atmosphere protection (Intrinsic Safety) and improved electromagnetic
compatibility (possibly with a fibre optic medium).

» Flexibletopology, covering alarge area (tree topology), applicable for data transfer rates of up to 20 khit/s,
power transmission viathe signal conductors, explosive atmosphere protection (Intrinsic Safety).

3.3.1 Version 1

The version 1 specifications describe a balanced line transmission corresponding to the US standard EIA RS-485 (EIA:
Electronic Industries Association, RS-485; Standard for electrical characteristics of generators and receiversfor usein
balanced digital multipoint systems). Terminators, located at both ends of the twisted pair cable, enable the version 1
physical layer to support in particular higher speed transmission. The maximum cable length is 1.2 km for data transfer
rates < 93.75 kbit/s. For 500 kbit/s the maximum length is reduced to 200m.

Table 3.3.1.1 Electrical Characteristics

Topology Linear bus, terminated at both ends, stubs < 0.3 nv*, no branches

Medium Shielded Twisted Pair, characteristic impedance between 100 and 130 Q, minimum
conductor area 0.22 mm2 (24 AWG*), capacity between the conductors about 60 pF/m

Line Length < 1200m, depending on the data transfer rate (cf. EIA RS-485)

Number of Stations 32 (Master stations, Slave stations or repeaters)

Data Transfer Rates 9.6/19.2/93.75 kbits/s for line lengths < 600m,
500 kbit/s for line lengths < 200m

Transceiver Chip e.g. SN 75176A, DS3695 or others

* Note: In contrast to the EIA RS-485 recommendations it is good practice to allow longer stubs if the total of the
capacitances of all stubs (Cstges) does not exceed the following values:

Cstges < 0.6 nF @ 500 kbit/s

Cstges < 1.0 nF @ 187.5 kbit/s

Cstges < 3.0 nF @ 93.75 kbit/s

Cstges < 15 nF @ 9.6 and 19.2 kbit/s

It is taken into consideration that the total line length includes the sum of the stub lengths.

* American Wire Gauge

Page 3-4 © 1995 PEP Modular Computers May 20, 1996




Profibus Layer 2 User’s Manual Chapter 3 Hardware Configuration

The dependency of the permissible data transfer rate upon the network expanse (maximum distance between two stations)
isshown in Figure A.1 of the US standard EIA RS-422-A (also included in DIN 66259 and CCITT V.11).

Note: The recommendations concerning the line length presume a maximum signal attenuation of 6 dB. Experience
shows that the distances may be doubled if conductors with an area= 0.5 mm2 (20 AWG) are used.

The line length and the number of connected stations may be increased by using repeaters (bidirectional amplifiers). A
maximum of three repeaters between two stations is permissible. If the datarateis < 93.75 kbit/s and if the linked

sections form a chain (linear bus topology, no active star) the maximum permissible topology (assuming AWG 24
twisted pair) is as follows:

1repeater: 2.4 kmand 62 stations
2 repeaters: 3.6 kmand 92 stations
3repeaters: 4.8 and 122 stations

May 20, 1996 © 1995 PEP Modular Computers Page 3-5



Chapter 3 Hardware Configuration Profibus Layer 2 User’s Manual

Below shows an example of alinear bus topology, with the following characteristics:

93.75 kbit/s 4 lines, 3 repeaters
1200m line length 4800m total length
30 or 31 stations per line 122 stations

Figure 3.3.1.2 Repeater in Linear Bus Topology

L|ne 1 Rc

’i‘ ’i‘ ’i‘ ___é Repeater 1 v&

L ][22 ][3]

Rc 1 Line2 | Y Rc
vA Repeater 2
Rc ¢ ¢ ¢ ¢ | Line3 | Rc
L1][2][3 |—__ v& Repeater 3
c Llne 4 Rc
- Stations Rc Characteristic resistance

Page 3-6 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 3 Hardware Configuration

Connector Technique, Mechanical and Electrical Specifications

Bus Connector

Each station is connected to the medium via a 9-pin D-sub connector. The female side of the connector islocated in the
station, while the male side is mounted to the bus cable. The mechanical and electrical characteristics are specified in 1SO
4902-1980 (DIN 41652, Part 1).

Preferably ametal connector housing should be used. When put together both parts of the connector should be fixed by
conducting screws.

The connection between the cable sections and the stations should be realized as T-connectors, containing three 9-pin D-
sub connectors (two male connectors and one femal e connector). Such T-connectors allow disconnection or replacement of
stations without cutting the cable and without interrupting operation (on line disconnection).

Contact Designations

The pin assignments and layout for the connectors are shown below.

Table 3.3.1.3 Connector Pin Assignments and Layout

Pin No.] RS-485 Ref. Signal Name M eaning
1 SHIELD * Shield, Protective Ground resp.
2 RP * Reserved for power
3 B/B’ RxD/TxD-P Recelve/Transmit-Data-P
4 CNTR-P Control-P
5 C/C DGND Data Ground
6 VP Voltage-Plus
7 RP * Reserved for Power
8 AIA RxD/TxD-N Recelve/Transmit-Data-N
9 CNTR-N ~ Control-N

* Signal is only necessary at station at end of the bus cable
* Signals are optional

RxD/
TxD-P DGND

1 2345

Front View of Male 000 O0O0
Back View of Female @ 0000 @

67829
RxD/

TxD-N
The Data Ground, connected to pin 5, and the Voltage Plus, connected to pin 6, supply the Bus Terminator.

The control signals, connected to pin 4 and pin 9, support direction control when repeaters without self control capability
are used. RS-485 signalling is recommended (but not mandatory).

The pins 2 and 7 are reserved for separate remote powering of field devices. The definition of signalling and powering
related to pins 2, 4, 7 and 9 is not subject to this standard.

May 20, 1996 © 1995 PEP Modular Computers Page 3-7



Chapter 3 Hardware Configuration Profibus Layer 2 User’'s Manual

3.4 SC-485F Serial Communications Controller (SCC) Configuration

I nformation on the configuration of the SC-485F SCC can be found on pages 6-10 of Appendix SCC
in thismanual.

Page 3-8 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

il

4. SOFTWARE ARCHITECTURE

4.1 OS-9 File System and Architecture

Requirements

To run PROFIBUS V3.12 or later, OS-9/PROF V3.0 or later must be installed.

The following files belong to the PROFIBUS layer 2 software in the OS-9/PROFINET directory:
/APPLIC/LAYER_2/OBJS:

demo PROFIBUS Layer 2 application examples that use the PROFIBUS library pbL2hl f . |
deno_M

deno_S

pbnon

pbnode

pbwat ch

/APPLIC/LAYER_2/SOURCE:

deno. c C-source code of the application examples
demo_Mc

deno_S. c

pbnode. ¢

pbnon. ¢

pbwat ch. c

/BSP/ICOMMON/DATMOD:
busPB. a Assembler source of the data module including the PROFIBUS bus parameters. Multiple object

files are generated with makef i | e by defining different PROFIBUS devices and different
PROFIBUS station numbers

defsfile

makefil e Generates multiple object files from busPB. a
/BSPICOMMON/NFMDESC:

n1PROFI . a Assembler source of the OS-9/NET device descriptor
defsfile

makefil e Generates the object module n1PROFI

May 20, 1996 © 1995 PEP Modular Computers Page 4-1



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

/BSPICOMMON/OBJS:

bPB<p>_<n> Data modules containing the PROFIBUS bus parameters for PROFIBUS stations 1,2,3 ..10
(n determines the PROFIBUS station number) and the name of the PROFIBUS device that is used
astheinterface (p=1 -> /profi_1, p=2 -> /profi_2, p=3 -> /profi_3)

bPB<p>_| Data module with PROFIBUS bus parameters. This module is only usable on an IUC board,
because the station number for PROFIBUS is determined by the DIP-switches on the lUC-board

bPB<p>_S Data module with PROFIBUS bus parameters. The PROFIBUS station number is defined by the
DIP-switches of one of the CxM status boards STAT-1 or STAT-2
Note: Data modules using PROFIBUS device /profi_3 are not provided.

bPB<p> M Data module with PROFIBUS bus parameters. This module can only be used with a SMART 1/0,
as the PROFIBUS station number is determined by a value stored in EEPROM.

phy PROFI PROFIBUS Layer 2 (MAC/FLC)

dr vPROFI OS-9 driver, interface to PROFIBUS Layer 2

pr of i man 0OS-9 manager for PROFIBUS

n1PROFI OS-9/NET device descriptor

nf PROFI OS-9/NET driver accessing PROFIBUS as a medium to transfer data

nl_nodes Ready to use data module for OS-9/NET device nl

conPROFI Communication task linking OS-9/NET driver nf PROFI with PROFIBUS

/IBSP/DEFS:

pbL2desc. d Definitions to build a PROFIBUS device descriptor

systype.d System definitions

/IBSPISMART/DEFS:

addr.d Definition files for SMART 1/0O

vect.d

/IBSPISMART/OBJS:

pSMART_1 PROFIBUS device descriptor for MC68302 SCC #1 on SMART 1/O (default PROFIBUS interface)

pSMART_2 PROFIBUS device descriptor for MC68302 SCC #2 on SMART 1/0

pSMART_3 PROFIBUS device descriptor for MC68302 SCC #3 on SMART 1/0

/IBSPISMART/PBL2DESC:

p_SMART 1. a Source file of PROFIBUS device descriptor p_ SMART_1
p_SMART 2. a Source file of PROFIBUS device descriptor p_ SMART_2
p_SMART_ 3. a Source file of PROFIBUS device descriptor p_ SMART_3
defsfile
makefil e

Page 4-2 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

/BSP/VIUC/DEFS:

addr.d Definition filesfor (V)IUC
vect.d

/BSP/VIUC/OBJS:

pVvli UC_1 PROFIBUS device descriptor for MC68302 SCC #1 on (V)IUC
pVvli UC 2 PROFIBUS device descriptor for MC68302 SCC #2 on (V)IUC
pVvli UC_3 PROFIBUS device descriptor for MC68302 SCC #3 on (V)IUC

/BSP/VIUC/PBL2DESC:

pviUC 1. a Source file of PROFIBUS device descriptor pVIUC_1
pviUC 2. a Source file of PROFIBUS device descriptor pVIUC_2

pVvi UC 3. a Source file of PROFIBUS device descriptor pVIUC_3
defsfile

makefile

/BSP/VM30/DEFS:

addr.d Definition filesfor VM30

vect.d

/BSP/VM30/0OBJS:

pVMBO_1 PROFIBUS device descriptor for MC68302 SCC #1 on VM 30
pVMBO_2 PROFIBUS device descriptor for MC68302 SCC #2 on VM 30
pVMBO_3 PROFIBUS device descriptor for MC68302 SCC #3 on VM 30
/BSP/VM30/PBL2DESC:

pVMBO_1. a Source file of PROFIBUS device descriptor pyM30_1
pVMBO_2. a Source file of PROFIBUS device descriptor pyM30_2
pVMBO_3. a Source file of PROFIBUS device descriptor pyM30_3
defsfile

makefile

/CMDS_PEP:

nksysgo Utility to generate a C-source program from atext procedure file

May 20, 1996 © 1995 PEP Modular Computers Page 4-3



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

Definition files for PROFIBUS application programs

IDEFS:

pbL2con. d
pbL2t ype. d

pbL2con. h
pbL2t ype. h
pbL2hl f. h
/LIB:

pbL2. |
pbL2hl f. |
pbL2l | f. |
/ROM/SY SGO:

profigo.txt

profigo.c
Vi ucgo. t xt

profigo.c

/ROM/SMART:

makefil e

/ROM/VIUC:

makefil e

/ROM/VM30:

makefil e

PROFIBUS definitions in assembler code

PROFIBUS definitionsin C-programming language

Text procedurefile to generate asysgo module for a(V)IUC or VM 30 to start OS-9/NET on
PROFIBUS automatically

C-source of thetext file pr of i go. t xt generated by the utility nksysgo

Text procedure file to generate asysgo module for aVIUC to start OS-9/RAMNET and
OS-9/NET on PROFIBUS automatically

C-source of thetext filevi ucgo. t xt generated by the utility nksysgo

Includes examples to generate OS-9 versions with PROFIBUS for SMART 1/0

Includes examplesto generate OS-9 versions with PROFIBUS for (V)IUC

Includes an example to generate aromable OS-9 with PROFIBUS for VM 30

Note: Files belonging to OS-9/NET can be found on the. OS-9/PEP_NETPAK disk.

Page 4-4

© 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

0S-9 Modules for PROFIBUS

The following modules must be available in the OS-9 module directory in order to use PROFIBUS:

phy PROFI

dr vPRCFI

pr of i man

profi_<n> n =1, 2 or 3 to determine the PROFIBUS interface port

busPB Neccessary if the application uses the functions of the library pbL2hl f . |

0S-9 Modules for OS-9/NET on PROFIBUS
These modules must be loaded into the OS-9 module directory in order to use OS-9/NET on PROFIBUS:

nfm

nf PROFI

nl

phy PROFI

dr vPRCFI

pr of i man

profi_<n> n =1, 2 or 3 to determine the PROFIBUS interface port
busPB

nl nodes

Note: OS-9/NET for PROFIBUS only works on active PROFIBUS stations. The PROFIBUS local station address may
not be 0.

For more information on OS-9/NET for PROFIBUS, refer to reference /9/.

May 20, 1996 © 1995 PEP Modular Computers Page 4-5



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Figure 4.1.0.1: OS-9 Software Architecture

L7 library
pbL7IIf

L2 library L2 library
pbL2lIf pbL2hlf

L2task 1

A

v

v

v .o~
L7 task 1

|

l

( L7 task n )

modPBL7

4

Ss \
0(

L 2 task n )

( srvPBL7 )

—

L2 manager

driver interface

I

comPROFI

PROFIman

g

drvPROFI

i

Standard
0S-9 tasks
(eg. nmon)

0S-9 network
file manager

nfm driver

nl

device descriptor

FLC
layer 2 protocol phyPROFI busparameters
Software MAC
A A A
device descriptors profi_1 profi_2 profi_3
© 1995 PEP Modular Computers May 20, 1996

Page 4-6



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.2 PROFIBUS Installation

The following command sequence is used to copy the files from the PROFIBUS disk to your system disk /dd:
chd /dmi if you have afloppy drive connected to a SCSI controller

or

chd /dnD if you have afloppy drive connected to the VM SC
i nstal | . PROFI NET

Together with the PROFIBUS files new driver and descriptor abject files of the OS-9/PROF V2.4/12.0 release for the
CPU-Boards VM 30 and (V)IUC are provided on the PROFIBUS release disk.

Note: Take care that you backup files on your system that are overwritten by the PROFIBUS disk.

4.2.1 Starting PROFIBUS

Under the directory /PROFINET anakef i | e provides the possihility to start PROFIBUS on different CPU types:
chd /dd/ PROFI NET

All neccessary files for PROFIBUS are loaded into the module directory. ThefilebusPB1_1 is selected as module
busPB to determine the PROFIBUS device and the bus parameters:

PROFIBUSdevice: lprofi_1
PROFIBUS station address: 1

OS-9/NET on PROFIBUS is started with the logical station name PB_1. Thisis defined by the data module
nl_nodes, which provides entries for ten OS-9/NET stations with logical namesPB_1 to PB_10.

Additionally when calling make the user is able to control which busPB module is|oaded, to select a different
PROFIBUS device and/or a different station address.

For more information type:

make

May 20, 1996 © 1995 PEP Modular Computers Page 4-7



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

4.2.2 Running PROFIBUS on a VM30 System
make pb_VM30

This starts the following procedure:

load -d ../ NET/CVDS/ nnon ../ NET/ CVDS/ ndir ../ NET/ CMDS/ nwat ch ../ NET/ CVDS/ chp

load -d ../ NET/ OS9SYS/ OBJS/ nfm

| oad -d BSP/ COWON OBJS/ bPB1_1

| oad -d BSP/ COWON OBJS/ profi man

| oad -d BSP/ COWON OBJS/ phyPROFI BSP/ COVMON OBJS/ dr vPROFI

| oad -d BSP/ COWON OBJS/ nf PROFI BSP/ COVMON OBJS/ n1PROFI
BSP/ COMMON OBJS/ n1_nodes

| oad -d BSP/ COWON OBJS/ conPROFI

| oad -d BSP/ VM30/ OBJS/ pVMBO0_1

| oad -d APPLI C/ LAYER 2/ OBJS/ *

| oad -d APPLI C/ LAYER 7/ OBJS/ *

nmon /nl -um &

sleep -s 2

==> include nwatch if you want to nonitor the network stations <==

==> nwatch /nl -ws & <==

==> sleep -s 2 <==

tsmon /pipel/.sh &

The PROFIBUS modules for aVM30 are loaded and OS-9/NET is automatically started locally:

PROFIBUS device: lprofi_1 upper port of VM30
PROFIBUS station address: 1

An example showing how to make aromable OS-9 for a VM30 with PROFIBUS modulesisgivenin

/PROFINET/ROM/VM30/makefile.

Page 4-8 © 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.2.3 Running PROFIBUS on a VIUC System
make pb_VI UC
This starts the procedure:

load -d ../ NET/CVDS/ nnon ../ NET/ CMDS/ ndi r CVDS/ nwat ch ../ NET/ CVDS/ chp
load -d ../ NET/ OS9SYS/ OBJS/ nfm
| oad -d BSP/ COWON OBJS/ bPB1_1
| oad -d BSP/ COWON OBJS/ profi man
| oad -d BSP/ COWON OBJS/ phyPROFI BSP/ COVMON OBJS/ dr vPROFI
| oad -d BSP/ COWON OBJS/ nf PROFI BSP/ COVMON OBJS/ n1PROFI
BSP/ COMMON OBJS/ n1_nodes
| oad -d BSP/ COWON OBJS/ conPROFI
| oad -d BSP/ VI UC/ OBJS/ pVI UC_1
| oad -d APPLI C/ LAYER 2/ OBJS/ *
| oad -d APPLI C/ LAYER 7/ OBJS/ *
nmon /nl -um &
sleep -s 2
==> include nwatch if you want to nonitor the network stations <==
==> nwatch /nl -ws & <==
==> sleep -s 2 <==
tsmon /pipel/.sh &

The PROFIBUS modules for aVIUC are loaded and OS-9/NET is automatically started locally:

PROFIBUS device: lprofi_1 upper port of VIUC
PROFIBUS station address: 1

An example showing how to make aromable OS-9 for a VIUC with PROFIBUS modulesis givenin
/PROFINET/ROM/VIUC/makefile.

May 20, 1996 © 1995 PEP Modular Computers Page 4-9



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

4.2.4 Testing the PROFIBUS Connection

The PROFIBUS starter kit board (referred to here as PB_2) is connected via a cable that fulfillsthe DIN 19245 layer 1
requirements to a second PROFIBUS board. This can either beaVIUC or aVM30 in your VMEbus system (referred to
hereasPB_1).

Start PROFIBUS on PB_1 with the nakef i | e under the directory /PROFINET depending on the CPU type:

make pb_VM30 for aVM30 as the VMEbus Master CPU

make pb_VI UC for aVIUC asthe VMEbus Master CPU

After the procedure has finished all the necessary PROFIBUS modules are loaded and OS-9/NET on PROFIBUS is
started.

After power up on the PROFIBUS starter kit PB_2 aromable OS-9 is brought up and the OS-9/NET on PROFIBUS is
automatically started on this station.

The user has to login onto the system with:

User nane?: super
Passwor d: user

To test the PROFIBUS connection typein:

t node nopause
ndir -ea /nl

The PROFIBUS nodes PB_1 and PB_2 are now connected to the network.

Now start a PROFIBUS application on your PROFIBUS nodes PB_1 and PB_2.

1st step: Start the PROFIBUS application on station PB_2 (= PROFIBUS station number 2).

Typein:

deno_ S 1 10 (demo_S<remote station> <sap>)

This application communicates with the remote PROFIBUS station 1 using Service Access Point 10 for the data
transfer. The application prepares a time string with the PROFIBUS service REPLY_UPDATE which is picked up from
the remote station when an SRD indication occurs. This SRD indication also contains data already sent from station 1.
2nd step: start the corresponding PROFIBUS application on station PB_1 (= PROFIBUS station number 1).

Typein:

denmo_M 2 10 (demo_M <remote_station> <sap>)

Each second atime string is transfered to station 2 and at the same time data is picked up from the remote station.

Page 4-10 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.3 Intercommunication Interface

PEP s layer 2 library implements two different ways to establish communications:

The PROFIBUS Iibrary “ pbl2hlf.I” usesasimplified structure to access the layer 2. The FDL-User does not have to
take care of memory management and needs only one function for request and conformation. These services do not
include cyclic services.

The FDL interface library “ pbl2lIf.I" offers the complete functionality of layer 2. The user, however, hasto take care
of the memory management and the more complex structure of the service calls.

The service parameters are formed into data blocks which are presented to the FDL, or are received from the FDL
accordingly. The necessary memory must be allocated by the FDL-User for these service parameters. In order to reduce
the memory requirements dynamic memory allocation is applied as and when required.

Since theindividual FDL- and/or FMA1/2 services contain different quantities and structures of parameters, it stands
to reason that no single template can be applied to cover all possihilities. Therefore the parameters for any given
service are normally split into several interlinked sub-structures.

Asmany of the service routines are not executed immediately, but rather must wait for the correct MAC condition
(i.e. token receipt), it often occurs that the installed parameters for a given service routine are installed and remain in
the FDL and must be called back with alater service call. Specia structures such as bus parameter blocks or
parameter blocks used to define the service call address remain in the FDL until layer 2 or the service call addressis
deactivated.

The FDL also needs other resourcesin the form of input buffers and parameter blocks for the evaluation of the
incoming messages.

May 20, 1996 © 1995 PEP Modular Computers Page 4-11



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

4.4 PROFIBUS Library “pbl2hlf.l”

Thislibrary is atool for the PROFIBUS user to simplify the use of PROFIBUS services. It provides functions to
transfer and receive data to and from a remote station as well as management functions to monitor the PROFIBUS.

The following functions are provided:

General Functions:

open_PROFI
close PROFI

Data Handling Functions:

open_JOB

open JOB_S
open_JOB R DX
open_JOB_R SRD
close JOB
send_SDA
send SDN
send_SRD

send RPLUPD_S
send RPLUPD M
ready IND

receive IND
release IND

(obsolete)

Management Functions:

get_LAS
get_CTR
get_TRR
enable EVENT
disable EVENT

Page 4-12

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

44.1 General Functions
open_PROFI
Function:
The PROFIBUS device will be opened. The function determines the name of the PROFIBUS device by the name defined
in the data module busPB. The service FMA2_SET BUSPARAMETER is executed, the values for the bus parameters
are determined by the entriesin the busPB module. This function must be called before any other function can be used.
C Syntax:

USI GN32 open_PROFI ()

Return Values:

0 - 126: Station Number
-1 0S-9 system error. Error number is stored in the global variable errno

The following return parameters are valid as of Version 3.1 Index 1.3;

0: no error

-1 0S-9 system error. Error number is stored in the global variable errno

else PROFIBUS status value. For status value explanations, refer to Appendix A.
close_ PROFI

Function:

The PROFIBUS device is closed again. This function should be called before the application terminates.

C Syntax:
USI GN32 cl ose PROFI ()
Return Values:

0 - 126: Station Number
-1 0S-9 system error. Error number is stored in the global variable errno

The following return parameters are valid as of Version 3.1 Index 1.3;

0: no error
-1 0S-9 system error. Error number is stored in the global variable errno
else PROFIBUS status value. For status value explanations, refer to Appendix A.

May 20, 1996 © 1995 PEP Modular Computers Page 4-13



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

4.4.2 Data Transfer Functions

To use data transfer functions the user has to prepare a structure called job descriptor JOB_DESCR where information are

exchanged between the user and the library functions. Depending on the used function the user has to prepare several

entries in the job descriptor and the library function returns information for the user in the job descriptor.

This structure of the job descriptor is defined in thefile pbL2hl f . h.

/* Structure of JOB DESCRI PTOR */

typedef struct JOB DESCR

{
USI G\8 job_id; /* job nunber */
USI G\8 renote_station; /* renote station */
USI G\8 servi ce; /* service */
USI G\8 st at us; /* status */
USI G\8 ssap; /* source SAP */
USI G\8 dsap; /* destination SAP */
USI G\8 *send_buf; /* send buffer for SDA/ SDN SRD */
/* REPLY UPDATE */
USI G\8 send_| en; /* buffer length */
USI G\8 send_cl ass; /* priority of data send */
USI G\8 *rec_buf; /* receive buffer for SRD */
USI G\8 rec_len; /* buffer length */
USI G\8 nr_i ndbuf; /* nunber of indication buffer */
USI G\8 *ind_buf; /* indication buffer for */
/* SDA/ SDN SRD */
USI G\8 ind_|len; /* buffer length */
USI G\8 i nd_cl ass; /* priority of indication data */
} JOB_DESCR;
Page 4-14 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

open_JOB (Obsolete)
Function:

A jobiscreated for following data transfer actions. The user has to prepare ajob descriptor JOB_DESCR for further
information exchange between the application and the library. The library activates two Service Access Points depending
on the value of ssap and prepares memory for further data transfer services. This function must be the called before any
data transfer function can be executed.

C Syntax:
#i ncl ude <pbL2hl f. h>

USI GN32 open_JOB (JOB_DESCR *j ob_descr)
JOB_DESCR *j ob_desrc;

Return Values:

0: no error
-1 OS-9 system error. Error number is stored in the global variable errno
else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Valuerange
<<: Provided by Library

job_id >> 0...60
remote_station

service

status

ssap >> 0...60
dsap >> 0...60
*send_buf

send len

send class

*rec_buf

rec len

nr_indbuf >> 0..9
*ind_buf

ind _len

ind_class

May 20, 1996 © 1995 PEP Modular Computers Page 4-15



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

job_id: The application is responsible to define the job_id number. If several jobs are created, the user has
to prepare multiple job descriptors with different job_id values.

dsap By opening ajob the application is able to send data packets from a source SAP (Service Access
Point) to a destination SAP. Source SAP and destination SAP are defined when the job is created.
The value for both can be different.
Note: Internally the library uses two source SAPs (ssap and ssap+ 1) so the application has to take
care not to use both source SAPs multiple timesin different jobs. The value for the receiving
station (remote_station) can be variable and defined at the time when the data transfer function is
called.

nr_indbuf The user has to define the number of buffers that should be provided for PROFIBUS to store
incoming indication data. If no indications are expected the value for nr_indbuf can be zero.

Page 4-16 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

open_JOB_S
Function:

A job iscreated for data transfer actions. The user has to prepare ajob descriptor JOB_ DESCR for further information
exchange between the application and the library. The library activates the Service Access Point depending on the value of
ssap and prepares memory for further data transfer services. Thisjob can be used for SDA/SDN and SRD send requests
(send_SDA, send_SDN, send_SRD).

C Syntax:

#i ncl ude <pbL2hl f. h>

USI GN32 open_JOB S (JOB DESCR *job_desrc)
Return Values:

0: no error
-1 0OS-9 system error. Error number is stored in the global variable errno
else.  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value range
<<: Provided by Library

job id >> 0..60
remote_station

service

status

ssap >> 0...60
dsap

*send_buf

send len

send class

*rec_buf

rec len

nr_indbuf >> 0
*ind_buf

ind len

ind _class

May 20, 1996 © 1995 PEP Modular Computers Page 4-17



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

job_id: The application is responsible to define the job_id number. If several jobs are created, the user has
to prepare multiple job descriptors with different job_id values.

ssap By opening ajob the application is able to send data packets from a source SAP (Service Access
Point) to a destination SAP. The source SAP is defined when the job is created.
Note: The value for the receiving station (remote_station) and the destination SAP (dsap) can be
variable and defined at the time when the data transfer function is called.

nr_indbuf The vaue of nr_indbuf must be set to zero and no indication can arrive.

The main differences of this function in relation to the open_JOB function are listed below:
A job created with open_JOB can be used to send request and receive indications.

Sending a request:

send_SDA: ssap --> dsap
send_SDN: ssap --> dsap
send_SRD: ssap --> dsap
send_RPLUPS S ssap --> dsap
send_RPLUPD_M: ssap --> dsap

Receiving an indication:

DA-indication: ssap
DN-indication: ssap
SRD-indication: ssap

Page 4-18 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

open_JOB_R_SDX
Function:

A job iscreated to receive data transfer indications of aremote SDA or SDN request by asend SDA or send_SDN
function call. The user has to prepare ajob descriptor JOB_DESCR for further information exchange between the
application and the library. The library activates the Service Access Point depending on the value of ssap and prepares
memory for further data transfer services. This function must be the called before adataindication can be received on that
particular SAP.

C Syntax:

#i ncl ude <pbL2hl f. h>

USI GN32 open_JOB R SDX (JOB _DESCR *j ob_desrc)
Return Values:

0: no error
-1 0S-9 system error. Error number is stored in the global variable errno
else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value range
<<: Provided by Library

job id >> 0...60
remote_station

service

status

ssap >> 0...60
dsap

*send_buf

send len

send class

*rec_buf

rec len

nr_indbuf >> 0..9
*ind_buf

ind len

ind _class

May 20, 1996 © 1995 PEP Modular Computers Page 4-19



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

job_id: The application is responsible to define the job_id number. If several jobs are created, the user has
to prepare multiple job descriptors with different job_id values.

ssap By opening ajob the application is able to receive data packets on a source SAP (Service Access
Point) from a destination SAP. Source SAP is defined when the job is created.

nr_indbuf The user has to define the number of buffers that should be provided for PROFIBUS to store
incoming indication data. If no indications are expected the value for nr_indbuf can be zero.

Page 4-20 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

open_JOB_R_SRD
Function:

A jobiscreated for following data transfer actions. The user has to prepare ajob descriptor JOB_DESCR for further
information exchange between the application and the library. The library activates the Service Access Point depending on
the value of ssap and prepares memory for further data transfer services. This function must be the called before data
transfer function send RPLUPD_<x> can be sent or an indication can be received from aremote Initiator by a send_SRD
function call.

C Syntax:

#i ncl ude <pbL2hl f. h>

USI GN32 open_JOB R SDX (JOB _DESCR *j ob_desrc)
Return Values:

0: no error
-1 0OS-9 system error. Error number is stored in the global variable errno
else.  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value range
<<: Provided by Library

job id >> 0...60
remote_station

service

status

ssap >> 0...60
dsap

*send_buf

send len

send _class

*rec_buf

rec len

nr_indbuf >> 0..9
*ind_buf

ind len

ind _class

May 20, 1996 © 1995 PEP Modular Computers Page 4-21



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

job_id:

ssap

nr_indbuf

The application is responsible to define the job_id number. If several jobs are created, the user has
to prepare multiple job descriptors with different job_id values.

By opening ajob the application is able to receive data packets by the send_ RPLUPD_<x>
function call from a source SAP (Service Access Point) to a destination SAP and to receive data
packets by a SRD-indication, issued from aremote SRD-request (send_ RPLUPD_<x>). Source
SAP isdefined when the job is created.

Note: The value for the receiving station (remote_station) can be variable and defined at the time
when the data transfer is called.

The user has to define the number of buffers that should be provided for PROFIBUS to store
incoming indication data. If no indications are expected the value for nr_indbuf can be zero.

Page 4-22

© 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

close_JOB
Function:

Thejobisclosed. Thelibrary deactivates the source SAPs (two source SAPs if opened using open_JOB) and the job
descriptor isfree again.

C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 cl ose_JOB (USI GN8 job_id)
Return Values:
0: no error
-1 OS-9 system error. Error number is stored in the global variable errno

else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library
job_id remains unchanged
remote_station remains unchanged
service remains unchanged
status remains unchanged
ssap remains unchanged
dsap remains unchanged
*send_buf remains unchanged
send len remains unchanged
send _class remains unchanged
*rec_buf remains unchanged
rec len remains unchanged
nr_indbuf remains unchanged
*ind_buf remains unchanged
ind_len remains unchanged
ind_class remains unchanged

May 20, 1996 © 1995 PEP Modular Computers Page 4-23



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

send_SDA
Function:
A data packet istransfered to a destination defined by the destination SAP dsap and the station number remote_station.
For the data transfer the PROFIBUS service SDA isused. The library functions returns to the application, when the SDA
confirmation for that SDA request has been passed back from PROFIBUS layer.
C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 send_SDA (USIGN8 job_id)
Return Values:
0: no error
-1 OS-9 system error. Error number is stored in the global variable errno

else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library
job_id remains unchanged
remote_station >> 0...126
service
status
ssap remains unchanged
dssp remains unchanged or >> 0...60
*send_buf >> Pointer to send buffer
send len >> 1...242
send class >> HIGH or LOW
*rec_buf
rec len
nr_indbuf remains unchanged
*ind_buf
ind_len
ind_class
dssp Job created by open_JOB: remains unchanged.
Job created by open JOB_S must be now defined and can be variable.
send_buf Note: The application has to prepare the send buffer. The real user data written to the send buffer

have to start at the 12th byte. Bytes 0- 11 are reserved for PROFIBUS and should not be touched.

send len Length of real user datato send.

Note: This function can be used only on active stations

Page 4-24 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

send_SDN
Function:
A data packet is transfer to a destination defined by the destination SAP dsap and the station number remote_station.
For the data transfer the PROFIBUS service SDN is used. The library functions returns to the application, when the SDN
confirmation for that SDN request has been passed back from PROFIBUS layer.
C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 send_SDN (USI GN8 job_i d)
Return Values:
0: no error
-1 0OS-9 system error. Error number is stored in the global variable errno

else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library
job_id remains unchanged
remote_station >> 0...126, or global address 127
service
status
ssap remains unchanged
dsap remains unchanged or >> 0...60
*send_buf >> Pointer to send buffer
send len >> 1...242
send class >> HIGH or LOW
*rec_buf
rec len
nr_indbuf remains unchanged
*ind_buf
ind _len
ind_class
dsap Job created by open_JOB: remains unchanged.
Job created by open JOB_S: must be now defined and can be variable.
send_buf: Note: The application has to prepare the send buffer. The real user data written to the send buffer

have to start at the 12th byte. Bytes 0- 11 are reserved for PROFIBUS and should not be touched.

send len Length of real user datato send.

Note: This function can be used only on active stations.

May 20, 1996 © 1995 PEP Modular Computers Page 4-25



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

send_SRD
Function:
A data packet is transfered to a destination defined by the destination SAP 'dsap’ and the station number ‘remote_station'.
If the destination has prepared data viathe REPLY_UPDATE service these data are passed to the application. For the data
transfer the PROFIBUS service SRD is used. The library functions returns to the application, when the SRD
confirmation for that SRD request has been passed back from PROFIBUS layer.
C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 send_SRD (USIGN8 job_id)
Return Values:
0: no error
-1 OS-9 system error. Error number is stored in the global variable errno

else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library
job_id remains unchanged
remote_station >> 0...126
service
status
ssap remains unchanged
dssp remains unchanged or >> 0...60
*send_buf >> Pointer to send buffer
send len >> 1...242
send class >> HIGH or LOW
*rec_buf << Pointer to receive buffer
rec len << 0...242
nr_indbuf remains unchanged
*ind_buf
ind _len
ind_class
dssp Job created by open_JOB: remains unchanged.
Job created by open JOB_S must be now defined and can be variable.
send_buf Note: The application has to prepare the send buffer. The real user data written to the send buffer

have to start at the 12th byte. Bytes 0- 11 are reserved for PROFIBUS and should not be touched.

send len Length of real user datato send.

Page 4-26 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

rec_buf Points to the buffer where the received user datais|ocated. This buffer is provided by the library and
can be overwritten by the next use of the send_SRD function.

rec len Length of received user data.

Note: This function can be used only on active stations.

May 20, 1996 © 1995 PEP Modular Computers Page 4-27



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

send RPLUPD_S
Function:
A data packet istransfered to a destination defined by the destination SAP dsap and the station number remote_station.
For the data transfer the PROFIBUS service REPLY_UPDATE in single mode is used. The library functions returns to
the application, when the request has been completed by the confirmation. The data is sent when an SRD request from a
remote station has been performed.
C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 send_RPLUPD_S (USI GN8 j ob_i d)
Return Values:
0: no error
-1 OS-9 system error. Error number is stored in the global variable errno

else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library
job_id remains unchanged
remote_station >> 0...126
service
status
ssap remains unchanged
dssp remains unchanged or >> 0..60
*send_buf >> Pointer to send buffer
send len >> 1...242
send class >> HIGH or LOW
*rec_buf
rec len
nr_indbuf remains unchanged
*ind_buf
ind _len
ind_class
dssp Job created by open_JOB: remains unchanged.
Job created by open JOB_R SRD: must be now defined and can be variable.
send_buf Note: The application has to prepare the send buffer. The real user data written to the send buffer

have to start at the 12th byte. Bytes O0- 11 are reserved for PROFIBUS and should not be touched.

send len Length of real user datato send.

Page 4-28 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

send_RPLUPD_M
Function:
A data packet istransfered to a destination defined by the destination SAP dsap and the station number remote_station.
For the data transfer the PROFIBUS service REPLY_UPDATE in multiple mode is used. The library functions returns
to the application, when the request has been completed by the confirmation. The user isinformed about the data transfer
by a SRD indication. The requested data remains available until it is overwritten, thus enabling a multiple readout of this
datawith every SRD request from aremote station.
C Syntax:

#i ncl ude <pbL2hl f. h>

USI GN32 send_RPLUPD_M (USI GN8 j ob_i d)
Return Values:
0: no error
-1 OS-9 system error. Error number is stored in the global variable errno

else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library
job_id remains unchanged
remote_station >> 0...126
service
status
ssap remains unchanged
dssp remains unchanged or >> 0...60
*send_buf >> Pointer to send buffer
send len >> 1...242
send class >> HIGH or LOW
*rec_buf
rec len
nr_indbuf remains unchanged
*ind_buf
ind_len
ind_class
dssp Job created by open_JOB: remains unchanged.
Job created by open_JOB_R_SRD: must be now defined and can be variable.
send_buf Note: The application has to prepare the send buffer. The real user data written to the send buffer

have to start at the 12th byte. Bytes O0- 11 are reserved for PROFIBUS and should not be touched.

send len Length of real user datato send.

May 20, 1996 © 1995 PEP Modular Computers Page 4-29



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

ready IND
Function:

This function informs the user if any indication is available due to SDA, SDN or SRD requests from a remote station or
an EVENT indication if the function enable_ EVENT has been used.

C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 ready_ I ND ()
Return Values:
0: no indication available

1 indication available
-1 OS-9 system error. Error number is stored in the global variable errno

receive_IND
Function:
Waits for an indication. This can be a SDA, SDN, SRD or EVENT indication. To get a SDA, SDN or SRD indication a
job has to be created via the functions open_JOB_S, open JOB_R SDX or open_JOB_R SRD. An EVENT indication
can occur, if the function enable EVENT has been executed. Using this function, the application is locked in the library
till an indication has occurred.
C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 receive_IND ()
Return Values:
0-60: job_id of corresponding job descriptor, where the information of an SDA, SDN or SRD indication is stored by
thelibrary

255  an EVENT indication has occurred, ajob descriptor is not relevant
-1 OS-9 system error. Error number is stored in the global variable errno

Page 4-30 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Job Descriptor (SDA, SDN or SRD Indication)

Entries >>: Prepared by Application Value Range
<<: provided by library
job_id remains unchanged
remote_station << 0...126, or global address 127
service << SDA, SDN, SRD
status << for SDA, SDN: OK
for SRD: NO, LO, HI
ssap remains unchanged
dsap remains unchanged
*send_buf
send len
send class
*rec_buf
rec len
nr_indbuf remains unchanged
*ind_buf << pointer to indication buffer
ind_len << 1...242
ind_class << HIGH or LOW
remote_station Indicates from where the data has been send
service Determines the service type of the indication
status The status of the indication.

For status value explanations, please refer to Appendix A.

ind_buf Points to the buffer where the received user data are located. This buffer is provided by the library
and can be overwritten by the next use of the receive_IND function.

ind_len Length of received user data.

May 20, 1996 © 1995 PEP Modular Computers Page 4-31



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

release IND
Function:
This function releases again the indication buffer, in order that the contents of the indication buffer can be overwritten
without further notice. Therefore the user has to read the buffer before he releases it. This function must be used after any
received SDA, SDN or SRD indication.
C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 rel ease_ I ND (USI GN8 job_id)
Return Values:
0: No error

-1 OS-9 system error. Error number is stored in the global variable errno
else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Note: The application examplesdeno. ¢, deno_M ¢ and denp_S. ¢ under the directory
/PROFINET/APPLIC/LAY ER_2/SOURCE gives advice how to use the library functions for data transfer.

Page 4-32 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.4.3 Management Functions

The following functions provides information for the application in order to monitor the PROFIBUS protocol.
get_LAS

Function:

Returnsthe list of active stations on the PROFIBUS. The application has to prepare a 128-byte buffer. The pointer
to the buffer is passed to the library function, where the buffer is updated.

C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 get _LAS (USI GN8 *buffer)
Return Values:
0: no error
-1 0OS-9 system error. Error number is stored in the global variable errno
else.  PROFIBUS status value. For status value explanations, refer to Appendix A.

Each entry of the buffer field reflects the status of the corresponding station number:

0x00: station is not active in the logical token ring
0x01: station is active in the logical token ring

Note: This function can be used only on active stations

May 20, 1996 © 1995 PEP Modular Computers Page 4-33



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

get_ CTR

Function:

Returns statistic values. The application has to prepare a 4-long word buffer. The pointer to the buffer is passed to the

library function, where the buffer is updated.
C Syntax:

#i ncl ude <pbL2hl f. h>

USI GN32 get CTR (USI GN32 *buffer)
Return Values:

0: no error
-1 OS-9 system error. Error number is stored in the global variable errno

else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Each entry of the buffer field is updated with statistic information:

buffer[0]: number of sent telegrams
buffer[1]: number of repeated telegrams
buffer[2]: number of correct start delimiters
buffer[3]: number of defective start delimiters

Page 4-34 © 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

get_TRR
Function:

Returns the Real Target Rotation Time. The application has to prepare a 1-long word buffer. The pointer to the buffer is
passed to the library function, where the buffer is updated.

C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 get _TRR (USI GN32 *buffer)
Return Values:
0: no error
-1 OS-9 system error. Error number is stored in the global variable errno
else  PROFIBUS status value. For status value explanations, refer to Appendix A.

The buffer field is updated with the value of the Real Target Rotation Time.

Note: This function can be used only on active stations

May 20, 1996 © 1995 PEP Modular Computers Page 4-35



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

enable EVENT

Function:

This function enables the receipt of FMA2 event or error indications. The application has to prepare a 1-byte buffer. The
pointer to the buffer is passed to the library function, where the buffer is updated when an FMA2 event occurs.

C Syntax:

#i ncl ude <pbL2hl f. h>

USI GN32 enabl e_ EVENT (USI GN8 *buffer)

Return Values:

0: no error

-1 OS-9 system error. Error number is stored in the global variable errno
else  PROFIBUS status value. For status value explanations, refer to Appendix A.

The application hasto use the function receive IND to get informed when an EVENT indication occurs. The buffer is
then updated with the event or error status number.

Status Values:

0x01 (FMA2_FAULT_ADDRESS):

0x02 (FMA2_FAULT_TRANSCEIVER):

0x03 (FMA2_FAULT_TTO):
0x04 (FMA2_FAULT_SYN):

0x05 (FMA2_FAULT_OUT_OF RING):

0x06 (FMA2_GAP_EVENT):

Multiple FDL addresses

Error in transmitter or receiver

Bus timeout

No receiving synchronization

Active station has left the logical token ring

A new station has been inserted into the GAP area

Page 4-36

© 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

disable EVENT
Function:
This function disables again the receipt of FMA2 event or error indications.
C Syntax:
#i ncl ude <pbL2hl f. h>
USI GN32 di sabl e_EVENT ()
Return Values:
0: no error
-1 OS-9 system error. Error number is stored in the global variable errno

else  PROFIBUS status value. For status value explanations, refer to Appendix A.

Note: The application examples pbnon. ¢ and pbwat ch. ¢ under the directory

/PROFINET/APPLIC/LAY ER_2/SOURCE gives advice on how to use the management library functions.

An application program structure using the pbl 2hl f . | library is shown overleaf.

May 20, 1996 © 1995 PEP Modular Computers

Page 4-37



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Application on Master

open PROFIBUS open_PROFI

device —

create JOB for

data transfer open_JOB
Y

send data send SDA

packet _

\

BUS

SDA-data

\

Application on Master/Slave

open_PROFI gg\e”r(': eF’ROFIBUS
Y

ore. 08 G
v

receive_IND }lr:giitc];c;iron
v

ke deiapacet
Y

release_IND Leulﬁgrse indication

\

prepare data for ne

send_RPLUPD_S remote send_SRD

SRD-data
Sg?g E;jtgta and send_SRD ¢
¢ receive_IND wait for
indication
interpret application / ¢
received data dependent
RPLUPD_S-data
application interpet received
dependent data packet
release indication
release_IND buffer
— repeat ¢
e
yes yes
no repeat
¢ no

close data [ JOB close data
transfer JOB Close_ close_JOB transfer JOB
close PROFIBUS close PROFIBUS
device close_PROFI close_PROFI device
Page 4-38 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

45 FDL Interface Library “pbl2lIf.l”

A standard OS-9 structure is used with manager, driver and descriptors to realize an interface between PROFIBUS layer 2
applications (FDL-User) and the PROFIBUS layer 2 protocol (FDL) itself. The user is able to setup FDL layer 2 services
via l/O-functions in the C language.

The Clibrary pbL2l | f . | isprovided to ease the communication between the FDL-User and the FDL viathe
PROFIBUS interface driver.

The communication is achieved viafive interface functions:

fdl _open ()

fdl _req ()

fdl _con_ind ()

fdl _con_ind_poll ()
fdl _cl ose

45.1 Function fdl_open

int fdl _open
(char * devi ce_nane)

Return Values
-1 aror
0: OK

This function initializes the PROFIBUS device. It requires a pointer to the PROFIBUS device name (i.e /profi_1) and
must be used by the FDL-User before any communication with the FDL can take place.

4.5.2 Function fdl req

int fdl _req
(T_FDL_SERVI CE_DESCR *sdb_ptr)

Return Values
-1 error
0: OK

This function is used to implement requests and provide the FDL with a pointer to the Service Description Block of type
T _FDL_SERVICE_DESCR which contains the occurring parameter and a pointer to the service specific parameter blocks
for any given service.

4.5.3 Function fdl_con_ind
T_FDL_SERVI CE_DESCR * fdl _con_ind (void)

Return Values
-1 error
else pointer to the Service Description Block

This function allows the FDL-User to distinguish between confirmation and indications. The result of this function
forms a pointer to the Service Description Block of type T_FDL_SERVICE_DESCR which contains the service variable
parameters and gives direction to the service specific parameter blocks. The function only returns to the application
program when a confirmation or indication arrives.

May 20, 1996 © 1995 PEP Modular Computers Page 4-39



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

4.5.4 Function fdl_con_ind_poll
T FDL_SERVI CE_ DESCR * fdl _con_ind _poll (void)

This function allows the FDL-User to distinguish between confirmation and indications. The result of this function
forms a pointer to the Service Description Block of type T_FDL_SERVICE_DESCR which contains the service variable
parameters and gives direction to the service specific parameter blocks. If no confirmation or indication is available a
NULL-pointer is returned.

Return Values

-1 error
0: no confirmation or indication available
ese pointer to the Service Description Block

455 Function fdl _close

int fdl _close (void)

This function is used to terminate the communication to the FDL, leading to the PROFIBUS device being closed.
Return Values:

-1 error
0: OK

45.6 FDL Services

The FDL (Fieldbus Data Link) services are made available to the user vialayer 2. The following data transfer services are
available:

* Send Data with Acknowledge (SDA)

* Send Data with No Acknowledge (SDN)

* Send and Request Data with Reply (SRD)

* Cyclic Send and Request Data with Reply (CSRD)

The services are realized by using a number of service primitives (denoted by FDL _...). To request a service the user
employs a Request primitive. A Confirmation primitive is returned to the user upon completion of the service, or in the
case of services with cyclic repetition, after every send/request cycle. If an unexpected event occurs at the remote station,
the Remote User isinformed by an Indication primitive.

To simplify the overview of the intercommunication interface, some terms have been selected which differ dightly from
those in the normal specification.

A list of the FDL services as defined in DIN 19245, Part 1 follows below. On the right hand side two columns form
constants “service” and “primitive” as they must be given in the Service Description Block
(T_FDL_SERVICE_DESCR). These terms are agreed for usein the include datapbL2con. h

A deviation from the DIN 19245, Part 1 standard occurs with the CSRD service; according to standards, acknowledgment
of the first CSRD.confirmation is made after a CSRD.request has loaded a Poll-List. All further CSRD.confirmations
show the completion of each SRD cycle and therefore take on the character of a CSRD.confirmation but have a different
meaning than the first confirmation.

Thought has been given to this condition, and as soon as the Poll-List has been loaded (LOAD_POLL_LIST) and is
confirmed, CSRD.con is used thereafter to confirm the completion of individual poll cycles. A CSRD.req service does
not exist.

Page 4-40 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Terminology to DIN 19245, Part 1 Intercommunication Interface
Service Primitive Possible for

Send Data with Acknowledge (SDA)

FDL_DATA_ACK.request SDA REQ M
FDL_DATA_ACK.confirm SDA CON M
FDL_DATA_ACK.indication SDA IND M and S

Send Data with No Acknowledge (SDN)

FDL_DATA request SDN REQ M
FDL_DATA.confirm SDN CON M
FDL_DATA.indication SDN IND Mand S

Send and Request Data with Reply (SRD)

FDL_DATA_REPLY.request SRD REQ M
FDL_DATA_REPLY.confirm SRD CON M
FDL_DATA_REPLY.indication SRD IND Mand S
FDL_REPLY_UPDATE.request REPLY_UPDATE REQ Mand S
FDL_REPLY_UPDATE.confirm REPLY_UPDATE CON Mand S

Cyclic Send and Request Data with Reply (CSRD)

FDL_SEND_UPDATE.request SEND_UPDATE REQ M
FDL_SEND_UPDATE.confirm SEND_UPDATE CON M
FDL_CYC_DATA_REPLY.request LOAD_POLL_LIST REQ M
FDL_CYC_DATA_REPLY.confirm (1st confirmation) LOAD_POLL_LIST CON M
FDL_CYC_DATA REPLY.confirm (2nd upwards confirmation) CSRD CON M
FDL_CYC_ENTRY.request POLL_ENTRY REQ M
FDL_CYC_ENTRY.confirm POLL_ENTRY CON M
FDL_CYC_DEACT.request DEACT_POLL_LIST REQ M
FDL_CYC_DEACT.confirm DEACT_POLL_LIST CON M
M: Master

S Save

Brief descriptions of each of the data transfer services follow below with the following notation being used in the
Figures:

req request
ind  .indication
.con .confirmation

May 20, 1996 © 1995 PEP Modular Computers Page 4-41



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

Send Data with Acknowledge (SDA)

Thisservice allows auser of the FDL (Layer 2) in a Master station (referred to asa L ocal User), to send user data (SDA-
data) to asingle remote station. At the remote station the SDA-data, if received error-free, is delivered by the FDL to the
user (referred to as a Remote User). The Local User receives a confirmation concerning the receipt or non-receipt of the
user data. If an error occurred during the transfer, the FDL of the Local User repeats the data transfer.

Figure 4.5.6.1: SDA Service

Master Master/Slave
Station Station
1 n

SDA.req

L ]

(SDA-data) ~~_ SbAdata
T~ SDA.ind
> >
-7 (SDA-data)
SDA.con - -
< < Acknowledge

Send Data with No Acknowledge (SDN)

This service alows a Local User to transfer data (SDN-data) to a single remote station, to many remote stations
(Multicast), or to all remote stations (Broadcast) at the same time. The Local User receives a confirmation acknowledging
the end of the transfer, but not whether the data was duly received. At the remote stations this SDN-data, if received error-
free, is passed to the Remote User. There is no confirmation, however, that such atransfer has taken place.

Figure 4.5.6.2: SDN Service

Master Master/Slave
Station Station
1 2 3 4 n
SDN.req SDN-data
> (SPN-data)
(SDN-data) T~
H
> )
SDN.con SDN.ind
< < |
Local (SDN-data)
Acknowledge

Page 4-42 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Send and Request Data with Reply (SRD)

Thisservice allowsaLocal User to transfer data (SRD-data) to a single remote station and at the same time to request
data (UPDATE-data) that was made available by the Remote User at an earlier time. At the remote station the received
SRD-data, if error-free, is passed to the Remote User. The service also allowsaLocal User to request data from the
Remote User without sending data (SRD-data=Null) to the Remote User.

The Local User receives either the requested data or an indication that the data was not available or a confirmation of the
non-receipt of the transmitted data. The first two reactions a so confirm the receipt of the transfered data.

If an error occurs during the transfer, the FDL of the Local User repeats the data transfer with the data request.

Figure 4.5.6.3: SRD Service

Master Master/Slave
Station Station
1 n

REPLY UPDATE.req

(UPDATE-data)

REPLY_UPDATE.con

SRD.re
ed > |~ _ SRD-data
(with/without SRD-data) T~ .
T~ SRD.ind
SRD.con | ____——-—77" (with/without SRD-data)
(UPDATE-data) UPDATE.data

Cyclic Send and Request Data with Reply (CSRD)

Thisservice allowsalLocal User to cyclicaly transfer data (S_UPDATE-data) to aremote station and at the sametimeto
request data (R_UPDATE-data) from the remote station. At the remote station the data received error-free is passed
cyclically to the Remote User. The service also allows a Local User to cyclically request data from the Remote User
without sending data to the Remote User.

The Local User cyclically receives either the requested data or an indication that the data was not available or a
confirmation of the non-receipt of the transmitted data. The first two reactions also confirm the receipt of the transfered
data

If an error occurs during the transfer, the FDL of the Local User repeats the data transfer with the data request.

The sdlected remote stations and the number and sequence of the data transfers with data requests for the cyclic modeis
defined by the Local User in the Poll-List.

May 20, 1996 © 1995 PEP Modular Computers Page 4-43



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Figure 4.5.6.4 Start of CSRD Service

Master Master/Slave
Station Station
1 2
LOAD_POLL_LIST.req
> REPLY_UPDATE.req
LOAD_POLL_LIST.con ‘ < (R_UPDATE-data)
SEND_UPDATE.re REPLY_UPDATE.con
= LI —> = >
(S_UPDATE-data for 2)
< SEND_UPDATE.con 3
SEND_UPDATE.req REPLY_UPDATE.req
(S_UPDATE-data for 3) ‘ (R_UPDATE-data)
SEND_UPDATE.con
< _ < ; REPLY_UPDATE.con >
SEND_UPDATE.req
(S_UPDATE-data for n) n
<« >END_UPDATE.COn | o | REPLY_UPDATE.req
POLL_ENTRY.req (R_UPDATE-data)
(unlock 2) f REPLY_UPDATE.con
< POLL_ENTRY.con >
— _ S UPDATE-data f. 2
T ——__ 2 SRD.ind
CSRD.con —— = -
< . < -———"" (S_UPDATE-data)
R_UPDATE-data
POLL_ENTRY.req > -
(unlock 3) N
POLL_ENTRY.con
( — (
_ _ S_UPDATE-data f. 3
\\\\\\\ 3 SRD.ind
< CSRD.con < -——"""7" (S_UPDATE-data) -
R_UPDATE-data
POLL_ENTRY.req > -
(unlock n) N
POLL_ENTRY.con
< = <—
— _ S_UPDATE-data f. n
\\\\\\\ n SRD.ind
< CSRD.con P B (S_UPDATE-data) >
R_UPDATE-data
Page 4-44 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Figure 45.6.5 End of CSRD Service

Master Master/Slave
Station Station
1 2

SEND_UPDATE.req

(S_UPDATE-data for 2)
SEND_UPDATE.con
( —_

CSRD.con

A new poll list cycle

REPLY_UPDATE.req

(R_UPDATE-data)
REPLY_UPDATE.con

—

—_——
_—
—_—
_—
_—
_—
b
—_—
_—

- —
e — —
—_—
—_—
—_—
—_—
—

CSRD.con

R_UPDATE-data

>
SRD.ind )
(S_UPDATE-data)
3
REPLY_UPDATE.req
(R_UPDATE-data)
REPLY UPDATE.con
Y — >

S UPDATE-data for 3

[~ —
_—
—_—
—_—
—_—
_—
—_—
_—
—_——
_—

SRD.ind

—_ —
p—
—_—
—_—
—_—
—_—
—_—
—_——

CSRD.con

DEACT_POLL_LIST.req

R_UPDATE-data

(S_UPDATE-data)

REPLY UPDATE.req

(R_UPDATE-data)
REPLY_UPDATE.con

S_UPDATE-data for n

[~ —
—_—
_—
—_—
_—
_—
_—
—_—
i
_—

SRD.ind

- —
e — —
—_—
—_—
—_—
—_—
—

R_UPDATE-data

<

DEACT_POLL_LIST.con

(S_UPDATE-data)

Individual descriptions of the layer 2 services are now described on the following pages.

May 20, 1996

© 1995 PEP Modular Computers

Page 4-45



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

SDA (Send Data with Acknowledge) Request

Description:
Thelocal station sends data to aremote station (viarem_add) and awaits confirmation of avalid or errornous transfer.

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr ::>

Transmit Buffer

send_data.buffer_ptr :>

11 Byte Header

User Data

2 Byte Trailer

The FDL header and trailer in the transmit buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th
byte.

The three linked structures remain in the layer 2 until confirmation of successful or errornous transfer is returned by the
target station. Therefore the allocated memory cannot be used for anything else until this has been compl eted.

Service Description Block:

sap 0..62 or DEFAULT_SAP Local Service Access Point

sarvice SDA

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (T_FDL_SR BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Page 4-46 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_data.buffer_ptr
send_datalength
receive_data.buffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

not significant

not significant

0..63 or DEFAULT_SAP
0..126

0..63 or NO_SEGMENT
LOW or HIGH

not significant
(UNSIGN8 far*)

1..242

not significant

not significant

not significant

not significant

Destination Service Access Point
Remote station address

Remote segment address

Priority of the service call

Pointer to transmit buffer
Length of user data

May 20, 1996

© 1995 PEP Modular Computers Page 4-47



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

SDA (Send Data with Acknowledge) Confirmation

Description:

The remote station sends confirmation of avalid or errornous completion of an SDA request to the FDL-User (message
originator). If the confirmation cannot be sent due to local circumstances a negative status automatically occurs.

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr

 —

send_data.buffer_ptr

Transmit Buffer

11 Byte Header

User Data

2 Byte Trailer

The data structure passed by the FDL request is returned to the FDL-User. The positive or negative confirmation of

successful transfer is given in the status field.

Service Description Block:

sap remains unchanged

service SDA

primitive CON

user_id remains unchanged

status OK, RR, RS, LS, NA, IV, NLT
descr_ptr remains unchanged

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap remains unchanged
rem_add.station remains unchanged
rem_add.segment remains unchanged
serv_class remains unchanged
update_status not significant
send_databuffer_ptr remains unchanged
send_datalength remains unchanged

receive_data.buffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

not significant
not significant
not significant
not significant

| dentification possibility for FDL-User
see below
Pointer to transmit/receive block

Pointer to transmit buffer

Page 4-48

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Status Values:

Code Meaning
OK Positive confirmation that the service has been carried out
RR The partner did not have adequate operationa resources
RS Partners service, access authorization or SAP, is not activated
LS Service or local Service Access Point not activated
NA Addressed partner does not respond
[\ Invalid parameter in request

NLT Own station not in logical token ring

May 20, 1996 © 1995 PEP Modular Computers Page 4-49



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

SDA (Send Data with Acknowledge) Indication
Description:

The FDL indicates to the local station that data has been received as aresult of an SDA request serviceinitiated by a
remote service.

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr :©

Receive Buffer

resouce.buffer_ptr

FDL-Header

1© User Data

receive_data.buffer_ptr

FDL-Trailer

Thereceive data.buffer_ptr is used to point to the start of the valid user data. resource.buffer_ptr points to the start of the
buffer i.e. the resource transferred to the FDL viaPUT_RESCRC TO FDL.

Service Description Block:

sap 0..63 or DEFAULT_SAP Destination Service Access Point (DSAP)
sarvice SDA

primitive IND

user_id 0..65535 | dentification possibility for FDL-User
status not significant

descr_ptr (T_FDL_SR BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Page 4-50 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_databuffer_ptr
send_datalength
receive_databuffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

0..126

0..63 or NO_SEGMENT
0..62 or DEFAULT_SAP
0..126

0..63 or NO_SEGMENT
LOW or HIGH

not significant

not significant

not significant
(UNSIGN8 far*)

1..242

(UNSIGN8 far*)

<= 255

Source station address

Source segment address

Source Service Access Point (SSAP)
Remote station address

Remote segment address

Priority of the service call

Pointer to user data

Length of received user data
Pointer to receive buffer
Length of receive buffer

May 20, 1996

© 1995 PEP Modular Computers

Page 4-51



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

SDN (Send Data with No Acknowledge) Request

Description:

Thelocal station sends datato a group or all remote stations. The service is not confirmed by the recipients, but rather a
local *sent” receipt is generated.

Data Structure:

Service Description Block

descr_ptr

 —

Transmit/Receive Block

Transmit Buffer

send_data.buffer_ptr :>

11 Byte Header

User Data

2 Byte Trailer

The FDL header and trailer in the transmit buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th

byte.

The three linked structures remain in the layer 2 until confirmation. Therefore the allocated memory cannot be used for
anything else until this has been successfully compl eted.

Service Description Block:

sap 0..62 or DEFAULT_SAP Local Service Access Point

service SDN

primitive REQ

user_id 0..65535 | dentification possibility for FDL-User

status not significant

descr_ptr (T_FDL_SR BLOCK far*) Pointer to transmit/receive block

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Page 4-52 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_data.buffer_ptr
send_datalength
receive_data.buffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

not significant

not significant

0..63 or DEFAULT_SAP
0..126 or global address 127
0..63 or NO_SEGMENT
LOW or HIGH

not significant
(UNSIGN8 far*)

1..242

not significant

not significant

not significant

not significant

Destination Service Access Point
Remote station address(es)
Remote segment address

Priority of the service call

Pointer to transmit buffer
Length of user data

May 20, 1996

© 1995 PEP Modular Computers Page 4-53



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

SDN (Send Data with No Acknowledge) Confirmation
Description:
Thelocal station’s FDL generates confirmation if no errornous transfer messages are returned.

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr :©

Transmit Buffer

send_data.buffer_ptr :>
1 11 Byte Header

User Data

2 Byte Trailer

The data structures passed by the FDL request are returned to the FDL-User. The positive or negative confirmation is
shown in the status field.

Service Description Block:

sap remains unchanged

sarvice SDN

primitive CON

user_id remains unchanged | dentification possibility for FDL-User
status OK, LS, IV, NLT

descr_ptr remains unchanged Pointer to transmit/receive block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Transmit/Receive Block:

loc_add.station not significant

loc_add.segment not significant

remote_sap remains unchanged

rem_add.station remains unchanged

rem_add.segment remains unchanged

serv_class remains unchanged

update_status not significant

send_databuffer_ptr remains unchanged Pointer to transmit buffer
send_datalength remains unchanged Length of user data
receive_data.buffer_ptr not significant

receive_datalength not significant

resource.buffer_ptr not significant

resource.length not significant

Page 4-54 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Status Values:

Code Meaning
OK Positive confirmation that the service has been carried out
LS Service or local Service Access Point not activated
[\ Invalid parameter in request
NLT Own station not in logical token ring

May 20, 1996 © 1995 PEP Modular Computers Page 4-55



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

SDN (Send Data with No Acknowledge) |ndication

Description:

The FDL indicates that the local station has received dataviaan SDN request service initiated by aremote station.

Data Structure:

Service Description Block

descr_ptr

 —

Thereceive data.buffer_ptr is used to point to the start of the valid user data. resource.buffer_ptr points to the start of the

Transmit/Receive Block

resource.buffer_ptr

receive_data.buffer_ptr

1© User Data

Receive Buffer

FDL-Header

FDL-Trailer

buffer i.e. the resource to be transferred to the FDL viaPUT _RESCRC _TO FDL.

Service Description Block:

m .
sarvice
primitive
user id
status
descr_ptr
next_descr
link_descr
resrv

0..63 or DEFAULT_SAP
SDN

IND

0..65535

not significant

(T_FDL_SR BLOCK far*)
reserved for FDL

reserved for FDL

reserved for FDL

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class
update_status
send_databuffer_ptr
send_datalength
receive_databuffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

0..126

0..63 or NO_SEGMENT
0..62 or DEFAULT_SAP
0..126 or global address 127
0..63 or NO_SEGMENT
LOW or HIGH

not significant

not significant

not significant

(UNSIGN8 far*)

1..242

(UNSIGN8 far*)

<= 255

Destination Service Access Point (DSAP)

| dentification possibility for FDL-User

Pointer to transmit/receive block

Source station address

Source segment address

Source’ s Service Access Point (SSAP)
Remote station address

Remote segment address

Priority of the service call

Pointer to user data

Length of the received user data
Pointer to receive buffer

Length of receive buffer

Page 4-56

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SRD (Send and Request Data with Reply) Request
Description:

The local station sends data to defined station(s) (viarem add) and collects any data waiting there. If no datais present the
local station only receives areceipt.

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr @
Transmit Buffer
send_data.buffer_ptr :>
1 11 Byte Header
User Data (called)
2 Byte Trailer
Receive Buffer
resource.buffer_ptr :

The FDL header and trailer in the transmit buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th
byte.

A receive buffer must be provided by the FDL-User viaresource.buffer_ptr for any replied data.

Service Description Block:

sap 0..62 or DEFAULT_SAP Local Service Access Point

sarvice SRD

primitive REQ

user_id 0..65535 | dentification possibility for FDL-User
status not significant

descr_ptr (T_FDL_SR BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-57



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_data.buffer_ptr
send_datalength
receive_data.buffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

not significant

not significant

0..62 or DEFAULT_SAP
0..126

0..63 or NO_SEGMENT
LOW or HIGH

not significant
(UNSIGN8 far*)

0..242

not significant

not significant
(UNSIGN8 far*)

<= 255

Destination Service Access Point
Remote station address

Remote segment address

Priority of the service call

Pointer to transmit buffer

Length of user data

Pointer to reply buffer
Length of reply buffer

Note: The data structures remain in level 2 and allocated memory cannot be used until completion of their task.

Page 4-58

© 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SRD (Send and Request Data with Reply) Confirmation
Description:

The confirmation of avalid or erranous completion of the SRD request returned and also indicates if any reply datais
available.

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr :©

Transmit Buffer

send_data.buffer_ptr :>
1 11 Byte Header

User Data (called)

2 Byte Trailer

Receive Buffer

resource.buffer_ptr
FDL-Header

receive.data_buffer_ptr @ User Data (reply)

FDL-Trailer

The data structures passed by the FDL request are returned to the FDL-User.

Service Description Block:

sap remains unchanged
sarvice SRD
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status RS, LS, LR, NA, IV, DL, DH, NR,
RDL, RDH, RR, NLT
descr_ptr remains unchanged Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-59



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_databuffer_ptr
send_datalength
receive_data.buffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

Status Values:

not significant
not significant

remains unchanged

remains unchanged

remains unchanged

remains unchanged

not significant

remains unchanged Pointer to transmit buffer
remains unchanged

(USIGN8 far *) Pointer to reply data buffer
0..242 Length of reply data
remains unchanged Pointer to reply telegram
remains unchanged Length of reply telegram

Code Meaning
RS Partners service, access authorization or SAP, is not activated
LS Service or local Service Access Point not activated
LR None or insufficient operational resources are available locally
NA Addressed partner does not respond
[\ Invalid parameter in request
DL Reply datalow available, positive conformation of data sent
DH Reply data high available, positive conformation of data sent
NR No reply data available, positive conformation of data sent
RDL Reply data low available, negative conformation of data sent
RDH Reply data high available, negative conformation of data sent
RR The partner did not have adequate operational resources
NLT Own station not in logical token ring
Page 4-60 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SRD (Send and Request Data with Reply) Indication

Description:

The FDL indicates that another station has completed an SRD cycle with the local station. If the Responder-SAP is
defined as ‘indication_mode==DATA’ (see service FMA2_ACTIVATE_RSAP) only SRD cycles where data has been
transferred, either with the receipt or the reply telegram, are indicated. If the Responder-SAP is defined as
‘indication_mode== ALL’, the SRD cycles without data are a so indicated.

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr :©

Receive Buffer

resource.buffer_ptr

FDL-Header

1© User Data

receive_data.buffer_ptr

FDL-Trailer

Thereceive data.buffer_ptr is used to point to the start of the valid user data. resource.buffer_ptr points to the start of the
buffer i.e. the resource to be transferred to the FDL viaPUT _RESCRC _TO FDL.

Service Description Block:

sap 0..62 or DEFAULT_SAP Destination Service Access Point (DSAP)
sarvice SRD

primitive IND

user_id 0..65535 | dentification possibility for FDL-User
status not significant

descr_ptr (T_FDL_SR BLOCK far *) Pointer to transmit/receive block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-61



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Transmit/Receive Block:

loc_add.station 0..126

loc_add.segment 0..63 or NO_SEGMENT
remote_sap 0..62 or DEFAULT_SAP
rem_add.gtation 0..126

rem_add.segment 0..63 or NO_SEGMENT
serv_class LOW or HIGH
update_status NO, LO, HI
send_databuffer_ptr not significant
send_datalength not significant
receive_databuffer_ptr (UNSIGN8 far *)
receive_datalength 0..242
resource.buffer_ptr (UNSIGN8 far *)
resource.length <=255

Source station address

Source segment address

Source Service Access Point (SSAP)
Remote station address

Remote segment address

Priority of the service call

Status of the reply data sent

Pointer to user data

Length of the received user data
Pointer to receiver buffer
Length of receiver buffer

Page 4-62 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

REPLY UPDATE Request

Description:

Thisprimitiveis used by the FDL-User to transfer data to a Service Access Point that was activated by the service
FMA2_ACTIVATE_RSAP. The data can be collected by another participant with either an SRD or CSRD service call.
Thistransfer can be either singular (transmit = SINGLE) or multiple (transmit = MULTIPLE) as desired. The
confirmation of transfer occurs with the next SRD.ind.

Data Structure:

Service Description Block

Update Block

descr_ptr :©

Update Buffer

upd_data.buffer_ptr |
:> 11 Byte Header

User Data

2 Byte Trailer

The FDL header and trailer in the update buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th
byte.

The Service Description Block and the update block remain in the FDL until the respective confirmation of successful or
errornous transfer is completed. The update buffer is returned only with the confirmation of the next update call and must
remain available for the FDL until the next update request.

Service Description Block:

sap 0..62 or DEFAULT_SAP Local Service Access Point

service REPLY__UPDATE

primitive REQ

user_id 0..65535 | dentification possibility for FDL-User
status not significant

descr_ptr (T_FDL_UPDATE BLOCK far*) Pointer to update block

next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-63



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Update Block:

dsp 0..62 or DEFAULT_SAP Destination Service Access Point

rem_add.gtation 0..126 Remote station address

rem_add.segment 0..63 or NO_SEGMENT Remote segment address

serv_class LOW or HIGH Priority of the service call

transmit SINGLE or MULTIPLE

upd_databuffer_ptr (UNSIGN8 far *) Pointer to update buffer

upd_datalength 1..242 Length of user data

Page 4-64 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

REPLY_UPDATE Confirmation

Description:

The FDL confirms acceptance of the update buffer. If the confirmation is positive, the update buffer remainsin the FDL
until the following UPDATE.req, returning no buffer for the first UPDATE.con. Hence UPDATE.con n aways returns
the update buffer of the UPDATE.req n-1.
The confirmation of a successful transfer of the update buffer contentsis indicated with a SRD.ind.

Data Structure:

Service Description Block

descr_ptr

Update Block

 —

upd_data.buffer_ptr

::> 11 Byte Header

Update Buffer No. n-1

User Data

2 Byte Trailer

If the status is OK, the parameter upd_data.buffer _ptr returns the value NULL (zero) for the first confirmation.
Subsequent confirmations return the update buffer, which was sent to the FDL with the preceding UPDATE.req (n-1).

Service Description Block:

m .
sarvice
primitive
user id
status
descr_ptr
next_descr
link_descr
resrv

Update Block:

dsap
rem_add.gtation

rem_add.segment
serv_class

transmit
upd_databuffer_ptr
upd_datalength

remains unchanged
REPLY_UPDATE
CON

remains unchanged
OK, LS, LR, IV
remains unchanged
reserved for FDL
reserved for FDL
reserved for FDL

remains unchanged
remains unchanged
remains unchanged
remains unchanged
remains unchanged
(UNSIGN8 far *)
1..242

| dentification possibility for FDL-User
see below
Pointer to update block

Pointer to update buffer of call n-1

May 20, 1996

© 1995 PEP Modular Computers

Page 4-65



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

Status Values:

Code Meaning
OK Update buffer has been accepted
LS Service Access Point not activated
LR During SINGLE, no transfer since previous update buffer has not been
sent
[\ Invalid parameter in request

Page 4-66 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SEND_UPDATE Request

Description:

With this service the FDL-User can pass data to the Poll-List ‘administration’ of the FDL. The Poll-List entry is
determined by the rem_add and dsap combination. The datais transferred using an SRD cycle when the respective Poll-
List entry is handled, either as asingle (transmit = SINGLE) or as amultiple (transmit = MULTIPLE) transfer.
Confirmation of the transfer occurs with a CSRD.con.

Data Structure:

Service Description Block

Update Block

descr_ptr :©

Update Buffer

upd_data.buffer_ptr :>

11 Byte Header

User Data

2 Byte Trailer

The FDL header and trailer in the update buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th
byte.

The Service Description Block and the update block remain in the FDL until the respective confirmation of successful or
errornous transfer is completed. The update buffer is returned only with the confirmation of the next update call and must
remain available for the FDL until the next update request.

Service Description Block:

sap 0..62 or DEFAULT_SAP Service Access Point of Poll-List (Poll-SAP)
service SEND__UPDATE

primitive REQ

user_id 0..65535 | dentification possibility for FDL-User
status not significant

descr_ptr (T_FDL_UPDATE BLOCK far*) Pointer to update block

next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-67



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Update Block:

dsap 0..62 or DEFAULT_SAP

rem_add.gtation 0..126 Remote station address

rem_add.segment 0..63 or NO_SEGMENT Remote segment address

serv_class LOW or HIGH Priority of the service call

transmit SINGLE or MULTIPLE

upd_databuffer_ptr (UNSIGN8 far *) Pointer to update buffer

upd_datalength 1..242 Length of user data

Page 4-68 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

SEND_UPDATE Confirmation

Description:

The FDL confirms acceptance of the update buffer into the Poll-List designated with the rem_add/dsap combination. If the
confirmation is positive, the update buffer remains in the FDL until the following UPDATE.req, returning no buffer for
the first UPDATE.con. Hence UPDATE.con n always returns the update buffer of the UPDATE.reg n-1.

The confirmation of a successful transfer of the update buffer contents isindicated with a CSRD.con.

Data Structure:

Service Description Block

descr_ptr

 —

Update Block

upd_data.buffer_ptr

::> 11 Byte Header

Update Buffer No. n-1

User Data

2 Byte Trailer

If the status is OK, the parameter “upd_data.buffer_ptr” returns the value NULL (zero) for the first confirmation.
Subsequent confirmations return the update buffer, which was sent to the FDL with the preceding UPDATE.req (n-1).

Service Description Block:

m .
sarvice
primitive
user id
status
descr_ptr
next_descr
link_descr
resrv

Update Block:

remains unchanged
SEND_UPDATE
CON

remains unchanged
OK, LS LR, IV
remains unchanged
reserved for FDL
reserved for FDL
reserved for FDL

| dentification possibility for FDL-User
see below
Pointer to update block

dsp remains unchanged

rem_add.station remains unchanged

rem_add.segment remains unchanged

serv_class remains unchanged

transmit remains unchanged

upd_databuffer_ptr (UNSIGN8 far *) Pointer to update buffer of call n-1

upd_datalength 1..242

May 20, 1996 © 1995 PEP Modular Computers Page 4-69



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

Status Values:

Code Meaning
OK Update buffer has been accepted
LS Service Access Point not activated
LR rem_add/dsap combination not found in the Poll-List. During
SINGLE, no transfer since previous update buffer has not been sent
[\ Invalid parameter in request

Page 4-70 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

LOAD_POLL_LIST Request

Description:
With this service the Poll-List is given to the FDL-User.

Data Structure:

Service Description Block Poll List Elements

Poll List Descriptor
descr_ptr @ Poll List Elements

Pointers Field

len

elem_ptr ;:>

—,
=L

The Service Description Block contains a pointer to the Poll-List descriptor, which contain detail s about the number and
location of the pointer fields. The length of the pointer field must exactly represent the number of Poll-List entries
required. Every entry must point to a Poll-List element which in turn will contain administrative information required for
the transfer.

The pointer field represents the Poll-List according to the DIN 19245 standard. Thisis because the priority of the Poll-
List elements can be manipulated by multiple entries in the pointer field to the same Poll-List element and the
arrangement of the pointer in the pointer field allows a determination of the execution sequence.

Service Description Block:

sap 0..62 Service Access Point of Poll-List (Poll-SAP)
service LOAD POLL_LIST

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (T_POLL_LIST _DESCR far *) Pointer to Poll-List descriptor

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Poll List Descriptor:

len >0 Number of Poll-List entries
confirm_mode ALL or DATA ALL: all SRD cycles are confirmed by CSRD-
confirmation
DATA: Only SRD cycles with user data are confirmed
elem ptr (T_POLL_LIST_ELEM_PTRfar *) Pointer to pointer field
Pointer Field:

T_POLL_LIST_ELEM_PTR [quantity of Poll-List entries]

May 20, 1996 © 1995 PEP Modular Computers Page 4-71



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Poll-List Elements:

dsap
rem_add.gtation

rem_add.segment

max_len csrd req low
max_len csrd _con low
max_len_csrd_con_high
poll_buffer.buffer_ptr
poll_buffer.length

send data

resrc_hdr

resrc_tail

resrc_ctr

transmit

to_send

marker

poll_telegram
data_telegram

data fcs

poll_fcs

0..62 or DEFAULT_SAP

0..126
0..63 or NO_SEGMENT
0..242

0..242

0..242

(UNSIGNS far *)

Destination Service Access Point

Maximum length of request (Iow)
Maximum length of reply data (low)
Maximum length of reply data (high)
Pointer to buffer for poll telegrams

> = FDL_OFFSET+FDL_TRAILER Length of buffer

not significant
not significant
not significant
not significant
reserved for FDL
reserved for FDL
reserved for FDL
reserved for FDL
reserved for FDL
reserved for FDL
reserved for FDL

Note: Multiple entries in the Poll-List are achieved by including more than one entry in the Pointers Field to the same

Poll-List element.

Page 4-72

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

LOAD_POLL_LIST Confirmation
Description:
The FDL confirms acceptance of the Poll-List or rgjects the Poll-List with an error status.

Data Structure:

Service Description Block

descr_ptr

If the status is OK, only the Service Description Block is returned, otherwise the entire structure transfered with the
request is returned indicating an error.

Service Description Block:

sap 0..62 Service Access Point for Poll-List (Poll-SAP)
srvice LOAD_POLL_LIST

primitive CON

user_id remains unchanged I dentification possibility for FDL-User

status OK, NO, IV see below

descr_ptr NULL (= zero) By error remains unchanged

next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Note: Value of descr_ptr: When status = OK this counter is reset to 0, otherwise it points to the Poll-List descriptor
given with the request.

Status Values:

Code Meaning
OK The Poll-List has been accepted by the FDL
NO The FDL aready contains a Poll-List
[\ Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-73



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

Cyclic Send and Request Data with Reply (CSRD) Confirmation

Description:

This primitive indicates to the FDL that an SRD cycle is being processed with the Poll-List and the status is returned for
any eventually received reply data. Subject to the value of the “ confirm_mode” parameter as loaded into the Poll-List
descriptor, all SRD cycles (confirm_mode = ALL) areindicated to the FDL-User or only the SRC cycles are indicated that
contain user data either in the sent or in the receipt telegram or in both (confirm_mode = DATA).

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr :©

Receive Buffer

resource.buffer_ptr

FDL-Header

1© User Data

receive_data.buffer_ptr

FDL-Trailer

Thereceive data.buffer_ptr is used to point to the start of the valid user data. resource.buffer_ptr points to the start of the
buffer i.e. the resource to be transferred to the FDL viaPUT _RESCRC _TO FDL.

Service Description Block:

sap 0..62 or DEFAULT_SAP Service Access Point (SAP) of Poll-List
sarvice CSRD
primitive CON
user_id remains unchanged | dentification possibility for FDL-User
status RS, LS, LR, NA, IV, NLT

DL, DH, NR, RDL, RDH, RR see below
descr_ptr (T_FDL_SR BLOCK far *) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-74 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_databuffer_ptr
send_datalength
receive_databuffer_ptr
receive_datalength

resource.buffer_ptr
resource.length

Status Values:

0..126

0..63 or NO_SEGMENT
0..62 or DEFAULT_SAP
0..126

0..63 or NO_SEGMENT
LOW or HIGH

NO, LO

not significant

not significant
(UNSIGN8 far *)

1..242

(UNSIGN8 far *)
<= 255

Local station address

Local segment address

Partner’ s Service Access Point (SAP)
Remote station address

Remote segment address

Priority of the service call

Status of the calling data sent

Pointer to user data
Length of the received user data

Pointer to receiver buffer
Length of receiver buffer

Code Meaning
RS Partners service, access authorization or SAP, is not activated
LS Service or local Service Access Point not activated
LR None or insufficient operational resources are available locally
NA Addressed partner does not respond
[\ Invalid parameter in request
DL Reply datalow available, positive conformation of data sent
DH Reply data high available, positive conformation of data sent
NR No reply data available, positive conformation of data sent
RDL Reply data low available, negative conformation of data sent
RDH Reply data high available, negative conformation of data sent
RR The partner did not have adequate operational resources
NLT Own station not in logical token ring
May 20, 1996 © 1995 PEP Modular Computers Page 4-75



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

POLL_ENTRY Request

Description:

Through the given rem_add/dsap combination, a specific entry in the Poll-List is marked as either available or barred by
the value of the “marker” parameter of the poll entry block. Thusit is possible to temporarily deactivate an entry in the
Poll-List, and save the partner having to poll it along with the currently desired entries.

Data Structure:

Service Description Block

descr_ptr

 —

Poll Entry Block

Service Description

W .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

Poll Entry Block:

Block:

0..62 or DEFAULT_SAP
POLL_ENTRY

REQ

0..65535

not significant
(T_POLL_ENTRY far *)
reserved for FDL

reserved for FDL

reserved for FDL

Service Access Point of Poll-List (Poll-SAP)

Identification possibility for FDL-User

Pointer to poll entry block

dsp 0..62 or DEFAULT_SAP Service Access Point of the partner

rem_add.gtation 0..126 Station address of the partner

rem_add.segment 0..63 or NO_SEGMENT Segment address of the partner

marker LOCKED or UNLOCKED New state of the entry

Page 4-76 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

POLL_ENTRY Confirmation
Description:
The availability or barred state of a Poll-List entry is confirmed.

Data Structure:

Service Description Block

Poll Entry Block

descr_ptr :©

Service Description Block:

sap remains unchanged Service Access Point of Poll-List (Poll-SAP)
service POLL_ENTRY

primitive CON

user_id remains unchanged Identification possibility for FDL-User

status OK, LS, NO, IV see below

descr_ptr (T_POLL_ENTRY far *) Pointer to poll entry block

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Poll Entry Blocks:

dsp remains unchanged Partner’s Service Access Point
rem_add.station remains unchanged Station address of the partner
rem_add.segment remains unchanged Segment address of the partner
marker remains unchanged New state of the entry

Status Values:

Code M eaning
OK Marker set
LS No Poll-List existsin the FDL at this Service Access Point
NO Marker not set, rem add/dsap combination not found in the Poll-List
v Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-77



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

DEACT_POLL_LIST Request
Description:
The processing of the Poll-List is terminated after completion of the current activity.

Data Structure:

Service Description Block

descr_ptr

It only remains to complete the Service Description Block.

Service Description Block:

sap 0..62 or DEFAULT_SAP Service Access Point for Poll-List (Poll-SAP)
srvice DEACT_POLL_LIST

primitive REQ

user_id 0..65535 I dentification possibility for FDL-User

status not significant

descr_ptr not significant

next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Page 4-78 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

DEACT_POLL_LIST Confirmation

Description:
The deactivation of the Poll-List is confirmed and if status = “OK” the Poll-List is given back to the FDL-User.

Data Structure:

Service Description Block Poll List Elements

Poll List Descriptor
descr_ptr @ Poll List Elements

Pointers Field

len

elem_ptr ;:>

—,
=L

The structure of the Poll-List isidentical to the structure given over during the LOAD_POLL_LIST.request. In the Poll-
List elements under theresc_ctr, the number of resources allocated to the respective elements are given.

The resource resc_tail pointsto the linked resources, and the send_data contains the last update buffer.

Service Description Block:

sap remains unchanged Service Access Point of Poll-List (Poll-SAP)
service DEACT POLL_LIST

primitive CON

user_id remains unchanged Identification possibility for FDL-User

status OK, LSor IV see below

descr_ptr (T_POLL_LIST DESCR far *) Pointer to Poll-List descriptor

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Status Values:

Code M eaning
OK Poll-List is disabled
LS The specified Service Access Point does not have a Poll-List in the FDL
v Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-79



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

457 FMA Services

The FMA (Fieldbus Management) services are made available through the management (FMA1/2) associated with the
layers 1 and 2. A list of the FMA1/2 services as defined in DIN 19245, Part 1 follows below. On the right hand side two
columns form constants “service” and “primitive” asthey must be given in the Service Description Block

(T_FDL_SERVICE_DESCR). These terms are agreed for use in the include-data“pbL2con. h”.

The services FMAL/2 SET VALUE and FMAL/2_READ_VALUE are created by multiple intercommunication services,
due to their many varied parameter structures.

Terminology to DIN 19245, Part 1 Intercommunication Interface

Service Primitive Possible for
Reset FMA1/2
FMAL1/2 RESET.request FMA2_ RESET REQ Mand S
FMAL1/2_RESET.confirm FMA2 RESET CON Mand S
Set Value FMA1/2
FMAL1/2 SET VALUE.request
FMAL/2_SET VALUE.confirm
FMA2_SET BUSPARAMETER REQ Mand S
FMA2_SET BUSPARAMETER CON Mand S
FMA2_SET STATISTIC _CTR REQ Mand S
FMA2_SET STATISTIC _CTR CON Mand S
FMA2_CHANGE_BUSPARAMETER REQ Mand S
FMA2_CHANGE_ BUSPARAMETER CON Mand S
Read Value FMA1/2
FMAL1/2 READ_VALUE.request
FMAL1/2_ READ_VALUE.confirm
FMA2_READ_ BUSPARAMETER REQ Mand S
FMA2_READ_BUSPARAMETER CON Mand S
FMA2_READ_STATISTIC CTR REQ M and S
FMA2_READ_STATISTIC CTR CON M and S
FMA2 READ TRR REQ M
FMA2 READ TRR CON M
FMA2_READ_LAS REQ M
FMA2_READ_LAS CON M
FMA2_READ_GAPLIST REQ M
FMA2_READ_GAPLIST CON M
Page 4-80 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Event FMA1/2

FMAL/2_EVENT.indication FMA2_EVENT IND Mand S

Ident FMA1/2

FMAL/2_IDENT.request FMA2_LSAP_STATUS REQ local: Mand S
remote: M

FMAL/2_IDENT.confirm FMA2_LSAP_STATUS CON local: Mand S
remote: M

LSAP FMA1/2

FMA1/2_LSAP_STATUSrequest FMA2_ IDENT REQ local: Mand S
remote: M

FMA1/2_LSAP_STATUS.confirm FMA2_IDENT CON local:M and S
remote: M

Live-List FMA1/2

FMAL/2_LIVE_LIST.request FMA2_LIVELIST REQ M

FMAL1/2_LIVE_LIST.confirm FMA2_LIVELIST CON M

SAP Activate FMA1/2

FMA1/2_SAP_ACTIVATE.request FMA2_ACTIVATE_SAP REQ Mand S

FMA1/2_SAP_ACTIVATE.confirm FMA2_ACTIVATE_SAP CON Mand S

SAP Activate FMA1/2

FMA1/2_RSAP_ACTIVATE.request FMA2_ACTIVATE_RSAP REQ Mand S

FMA1/2_RSAP_ACTIVATE.confirm FMA2_ACTIVATE_RSAP CON Mand S

SAP Deactivate FMA1/2

FMA1/2_SAP_DEACTIVATE.request FMA2 DEACTIVATE_SAP REQ Mand S

FMA1/2_SAP_DEACTIVATE.confirm FMA2_DEACTIVATE_SAP CON Mand S

M: Master, active station
S Save, passive station

Individual descriptions of the above are given in the same order on the following pages.

May 20, 1996 © 1995 PEP Modular Computers Page 4-81



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

FMA2 RESET Request

Description:

The FLC and MAC sub-layers are reinitialized. All information previously contained in FLC and MAC islost. All data
structures of the FDL-user that were contained in the FDL at the time of the reset are also lost, and the user must restore

them himself.

The FDL waits for bus parameters after a FMA2_RESET. It al'so waits for bus parameters after the start of layer 2

software. Once these bus parameters are set the MAC runs and other services can be undertaken.

Important: After the FMA2 RESET a FMA2_SET_BUSPARAMETER must be sent. No other services can be
accepted until this has taken place.

If several PROFIBUS application tasks are running, using this service will affect all PROFIBUS applications.

Data Structure:

Service Description Block

descr_ptr

Service Description Block:

m .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

MSAP_O Loca Service Access Point
FMA2_RESET

REQ

0..65535 | dentification possibility for FDL-User

not significant
not significant
reserved for FDL
reserved for FDL
reserved for FDL

Page 4-82

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2 RESET Confirmation

Description:
It is confirmed that the FDL has been reset.

Data Structure:

Service Description Block

descr_ptr

Service Description Block:

sap remains unchanged

srvice FMA2_RESET

primitive CON

user_id remains unchanged I dentification possibility for FDL-User
status OK or IV see below

descr_ptr not significant

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
[\ Invalid parameter in request

Note: Aninvalid SAP will also return ‘1V’ as the status.

May 20, 1996 © 1995 PEP Modular Computers Page 4-83



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2_SET_BUSPARAMETER Request
Important: This service call must be carried out after start of layer 2 software and after every FMA2 RESET.
Description:

The FDL-User sends the operational parameters to the FDL. The parameters HSA, ident and in_ring_desired are taken
over after the layer 2 software starts and after every FMA2_RESET, and cannot be altered once in service.

If the bus parameters are set using the FMA2_SET _BUSPARAMETER service, further changes can be made using the
FMA2_CHANGE_BUSPARAMETER service.

Data Structure:

Service Description Block

Bus Parameter Block

descr_ptr :©

Identity Field

ident ::>

All bus parameters must be transferred in the form of a bus parameter block. Since the FDL makes a copy and returns the
original to the FDL-User, individual changes can be made to the origina and the FDL be informed viathe
FMA2_CHANGE_BUSPARAMETER service call.

Service Description Block:

sap MSAP_0O

srvice FMA2_SET_BUSPARAMETER

primitive REQ

user_id 0..65535 | dentification possibility for FDL-User
status not significant

descr_ptr (T_BUSPAR_BLOCK far*) Pointer to bus parameter block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Page 4-84 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Bus Parameter Block:

loc_add.station 0..126 Own station address
loc_add.segment 0..63 or NO_SEGMENT Own segment address
baud rate K_BAUD_9 6, or

K_BAUD_19 2, or
K_BAUD_93 75, or
K_BAUD_187 5, or

K_BAUD_500
medium_red NO_REDUNDANCY or REDUNDANCY
tsl 1..65535 Slot time
min_tsdr 1..65535 Minimum station delay time
max_tsdr 1..65535 Maximum station delay time
tqui 0..255 Modulator decoupletime
tset 1..255 Exposure time (set up)
ttr 1.2-1 Target rotation time
g 1..100 GAP update factor
in_ring_desired TRUE or FALSE Desired participation in token ring
hsa 2..126 Highest station address (in local segment)
max_retry_limit 1.8 Max retrysin event of error
ident (UNSIGN8 far*) Painter to identity field
ind_buf len 0, 1-255 0 = token brake not active, otherwiseit is active

Identity Field:

Theidentity field supplied by the FDL-User must contain the following “C” structure:

UNSI GN\8 Length vendor_name
UNSI GN\8 Length controller_type
UNSI GN\8 Length HW _release
UNSI GN\8 Length SW_release
char[i dent _si ze] ASCII character string

i dent _si ze must be at least equal to the sum of the previous four parts, but cannot exceed 238 bytes.
Note: All times are given as hit times.

The recommended parameter values for various baud rates is shown below:

Baud Rate 9.6 19.2  93.75 187.5 500
tsl 100 200 500 1500 3500
min_tsdr 30 60 125 250 500
mex_tsdr 50 100 250 500 1000
toui 0 0 0 0 0

tset 5 10 15 25 50

ttr 10000 15000 30000 50000 100000
g 1 1 1 1 1

The target rotation time (ttr) depends upon the actual 1oad and number of connected stations. Too small a value should not
be chosen for the sake of efficiency.

Layer 2 demands on the processor can be reduced by using alarge slot time and a small GAP factor. Thiswill ensure that
not much time is wasted waiting for responses from busy or non-available partners.

The participant is passive when thein_ring_desired is set to FALSE.

May 20, 1996 © 1995 PEP Modular Computers Page 4-85



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2_SET_BUSPARAMETER Confirmation

Description:

The acceptance of the bus parameters are confirmed or, if errornous (invalid parameters, etc.), denied.

Data Structure:

Service Description Block

descr_ptr

 —

Bus Parameter Block

Identity Field

ident ::>

The bus parameter block is returned to the FDL-User. The FDL keeps a copy of the data. It is recommended that the
FDL-User retains the bus parameter block for any minor changes needed later.

Service Description Block:

m .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

Status Values:

remains unchanged

FMA2_SET_BUSPARAMETER

CON

remains unchanged I dentification possibility for FDL-User
OK,IVorLR see below

remains unchanged Pointer to bus parameter block

reserved for FDL
reserved for FDL
reserved for FDL

Code Meaning
OK Positive conformation that the service has been carried out
[\ Invalid parameter in request
LR Bus parameters have aready been set using a previous
FMA2 SET BUSPARAMETER service
Page 4-86 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2 CHANGE_BUSPARAMETER Request
Important: This service call can be carried out after a FMA2_SET BUSPARAMETER service.
Description:

The FDL-User sends the operational parameters to the FDL. The parameters HSA, ident and in_ring_desired are taken
over after the layer 2 software starts and after every FMA2_RESET, and cannot be altered once in service.

After every call for FMA2_CHANGE_BUSPARAMETER, the MAC leaves the logical token ring and takes up an active
or passive idle mode according to thein_ring_desired parameter.

Data Structure:

Service Description Block

Bus Parameter Block

descr_ptr :©

Identity Field

ident ::>

All bus parameters must be transferred in the form of a bus parameter block. Since the FDL makes a copy and returns the
original to the FDL-User, individual changes can be made to the origina and the FDL be informed viathe
FMA2_CHANGE_BUSPARAMETER service call.

Service Description Block:

sap MSAP_0O

srvice FMA2_CHANGE_BUSPARAMETER

primitive REQ

user_id 0..65535 | dentification possibility for FDL-User
status not significant

descr_ptr (T_BUSPAR_BLOCK far*) Pointer to bus parameter block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-87



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

Bus Parameter Block:

loc_add.station 0..126 Own station address
loc_add.segment 0..63 or NO_SEGMENT Own segment address
baud rate K_BAUD_9 6, or

K_BAUD_19 2, or
K_BAUD_93 75, or
K_BAUD_187 5, or

K_BAUD_500
medium_red NO_REDUNDANCY or REDUNDANCY
tsl 1..65535 Slot time
min_tsdr 1..65535 Minimum station delay time
max_tsdr 1..65535 Maximum station delay time
tqui 0..255 Modulator decoupletime
tset 1..255 Exposure time (set up)
ttr 1.2-1 Target rotation time
g 1..100 GAP update factor
in_ring_desired TRUE or FALSE Desired participation in token ring
hsa 2..126 Highest station address (in local segment)
max_retry_limit 1.8 Max retrysin event of error
ident (UNSIGN8 far*) Painter to identity field
ind_buf len 0, 1-255 0 = token brake not active, otherwiseit is active

Identity Field:

Theidentity field supplied by the FDL-User must contain the following “C” structure:

UNSI GN\8 Length vendor_name
UNSI GN\8 Length controller_type
UNSI GN\8 Length HW _release
UNSI GN\8 Length SW_release
char[i dent _si ze] ASCII character string

i dent _si ze must be at least equal to the sum of the previous four parts, but cannot exceed 238 bytes.
Note: All times are given as hit times.

The recommended parameter values for various baud rates is shown below:

Baud Rate 9.6 19.2  93.75 187.5 500
tsl 100 200 500 1500 3500
min_tsdr 30 60 125 250 500
mex_tsdr 50 100 250 500 1000
toui 0 0 0 0 0

tset 5 10 15 25 50

ttr 10000 15000 30000 50000 100000
g 1 1 1 1 1

The target rotation time (ttr) depends upon the actual 1oad and number of connected stations. Too small a value should not
be chosen for the sake of efficiency.

Layer 2 demands on the processor can be reduced by using alarge slot time and a small GAP factor. Thiswill ensure that
not much time is wasted waiting for responses from busy or non-available partners.

The participant is passive when thein_ring_desired is set to FALSE.

Page 4-88 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_CHANGE_BUSPARAMETER Confirmation
Description:
The acceptance of the bus parameters are confirmed or, if errornous (invalid parameters, etc.), denied.

Data Structure:

Service Description Block

Bus Parameter Block

descr_ptr :©

Identity Field

ident ::>

The bus parameter block is returned to the FDL-User. The FDL keeps a copy of the data. It is recommended that the
FDL-User retains the bus parameter block for any minor changes needed later.

Service Description Block:

sap remains unchanged

srvice FMA2_CHANGE_BUSPARAMETER

primitive CON

user_id remains unchanged I dentification possibility for FDL-User
status OK,IVorLR see below

descr_ptr remains unchanged Pointer to bus parameter block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
[\ Invalid parameter in request or invalid service
LR Bus parameters are not set by a previous
FMA2 SET BUSPARAMETER service

May 20, 1996 © 1995 PEP Modular Computers Page 4-89



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2_SET_STATISTIC_CTR Request
Description:
The statistic counter in the FDL is reset to zero and restarted.

Data Structure:

Service Description Block

descr_ptr

Service Description Block:

sap MSAP_0O

srvice FMA2_SET_STATISTIC_CTR

primitive REQ

user_id 0..65535 I dentification possibility for FDL-User
status not significant

descr_ptr not significant

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Page 4-90 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

FMA2_SET_STATISTIC_CTR Confirmation

Description:

The reset of the statistical counter is confirmed.

Data Structure:

Service Description Block

descr_ptr

Service Description Block:

m .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

Status Values:

remains unchanged

FMA2_SET_STATISTIC_CTR

CON

remains unchanged I dentification possibility for FDL-User
OK or IV

not significant

reserved for FDL

reserved for FDL

reserved for FDL

Code Meaning
OK Positive conformation that the service has been carried out
[\ Invalid parameter in request

May 20, 1996

© 1995 PEP Modular Computers

Page 4-91



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2_READ_BUSPARAMETER Request

Description:

This primitive is used by the FDL to read the actual bus parameters with the exception of the identity field. The

FMA2_|IDENT serviceis used to read the identity field.

Data Structure:

Service Description Block

Bus Parameter Block

descr_ptr :©

The FDL-User supplies a structure of thetype T_FDL_BUSPAR_BLOCK to the FDL. No additiona reference must be

made for the identity field.

Service Description Block:

sap MSAP_O

service FMA2_READ_BUSPARAMETER

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (T_BUSPAR BLOCK far*) Pointer to bus parameter block
next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Bus Parameter Block:

The bus parameter block must have the same structure as in the FMA2_SET BUSPARAMETER service call. The

pointer to the identity field is however, without significance.

Page 4-92 © 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

FMA2_READ_BUSPARAMETER Confirmation

Description:

The read bus parameters are given over to the FDL-User.

Data Structure:

Service Description Block

Bus Parameter Block

descr_ptr :©
Service Description Block:
sap remains unchanged
service FMA2_SET BUSPARAMETER
primitive REQ
user_id remains unchanged Identification possibility for FDL-User
status OKor IV see below
descr_ptr remains unchanged
next_descr reserved for FDL
link_descr reserved for FDL
resv reserved for FDL
Bus Parameter Block:
loc_add.station 0..126 Own station address
loc_add.segment 0..63 or NO_SEGMENT Own segment address
baud_rate K_BAUD_9 6, or
K_BAUD 19 2, or
K_BAUD_93 75, or
K_BAUD 187 5, or
K_BAUD_500
medium_red NO_REDUNDANCY or REDUNDANCY
tsl 1..65535 Slot time
min_tsdr 1..65535 Minimum station delay time
max_tsdr 1..65535 Maximum station delay time
tqui 0..255 Modulator decouple time
tset 1..255 Exposure time (set up)
ttr 1.222-1 Target rotation time
g 1..100 GAP update factor
in_ring_desired TRUE or FALSE Desired participation in token ring
hsa 2..126 Highest station address (in local segment)
max_retry_limit 1.8 Maximum retrys in event of error
ident NULL
ind_buf len 0, 1-255 Token brake
May 20, 1996 © 1995 PEP Modular Computers Page 4-93



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
[\ Invalid parameter in request

Page 4-94

© 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_READ_STATISTIC_CTR Request
Description:
With this service the FDL is instructed to read the statistical counter.

Data Structure:

Service Description Block

Statistic Counter

descr_ptr :©

The FDL-User must use a data structure of the type T_FDL_STATISTIC_CTRinto which the read values are entered.

Service Description Block:

sap MSAP_O

service FMA2 READ_STATISTIC_CTR

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (T_FDL_STATISTIC CTRfar*)  Pointer to statistic counter

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Statistic Counter:

frame_send_count not significant
retry _count not significant
sd_count not significant
sd _error_count not significant

May 20, 1996 © 1995 PEP Modular Computers Page 4-95



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

FMA2_READ_STATISTIC_CTR Confirmation

Description:

The read statistical values are transferred to the FDL-User.

Data Structure:

Service Description Block

descr_ptr

 —

Statistic Counter

Service Description

W .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

Statistic Counter:
frame_send_count
retry_count

sd_count

sd _error_count

Status Values:

Block:

remains unchanged

FMA2_READ_STATISTIC_CTR

CON

remains unchanged
OK or IV

remains unchanged
reserved for FDL
reserved for FDL
reserved for FDL

1.232-1
1.216-1
1.232-1
1.216-1

Identification possibility for FDL-User
Status
Pointer to statistic counter

Number of sent telegrams

Number of repeated telegrams
Number of valid start delimiters
Number of errornous start delimiters

Code M eaning
OK Positive conformation that the service has been carried out
v Invalid parameter in request

Page 4-96

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2 READ_TRR Regquest

Description:

With this service the FDL is given the task of reading the “Real Target Rotation Time”.
Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

UNSIGN32

descr_ptr :©

The FDL-User must supply a pointer to the 32-bit variable into which the FDL can place the read value.

Service Description Block:

sap MSAP_0O

srvice FMA2_READ_TRR

primitive REQ

user_id 0..65535 I dentification possibility for FDL-User
status not significant

descr_ptr (UNSIGN32 far *) Pointer to 32-bit variable

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-97



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

FMA2 READ_TRR Confirmation

Description:

Theread “Real Target Rotation Time” is given to the FDL-User.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

descr_ptr

 —

UNSIGN32

Service Description Block:

m .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

Status Values:

remains unchanged

FMA2_READ_TRR

CON

remains unchanged I dentification possibility for FDL-User
OK, IV or NO see below

(UNSIGN32 far *) Pointer to TRR variable

reserved for FDL
reserved for FDL
reserved for FDL

Code Meaning
OK Positive conformation that the service has been carried out
NO No reply datawill be transfered
[\ Invalid parameter in request

Page 4-98

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2 READ LAS Request

Description:

The FDL isinstructed to read the “List of Active Stations” (LAS) This serviceis only supported by the active
participants.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

Byte Field

descr_ptr :©

The FDL-User points to a byte field with the length hsa+1 into which the FDL can enter the LAS.

Service Description Block:

sap MSAP_O

service FMA2 READ LAS

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (UNSIGNS8 far *) Pointer to byte field (Iength hsa+1)
next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-99



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

FMA2 READ_LAS Confirmation

Description:

Theread value of the “List of Active Stations” (LAS) is given to the FDL-User.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

descr_ptr

 —

Byte Field

Service Description

W .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

Block:

remains unchanged
FMA2 READ LAS
CON

remains unchanged
OK, IV or NO
(UNSIGNS8 far *)
reserved for FDL
reserved for FDL
reserved for FDL

List of Active Stations (LAS):

The LAS s entered into the byte field, given during the request.
Bytei (0 < =i < = hsa) gives the status of participant i.

00 = Participant is not active in the logical token ring.
01 = Participant is active in the logical token ring.

Status Values:

Identification possibility for FDL-User

Status
Pointer toread LAS

Code
OK Positive conformation that the service has been carried out
NO No reply datawill be transfered
I\ Invaid parameter in request
Page 4-100 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_READ GAPLIST Request
Description:

The FDL isinstructed to read the “GAP-List”. This service lists stations that lie between the next active station and your
own address.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

Byte Field

descr_ptr :©

The FDL-User points to a byte field with the length hsa+ 1 into which the FDL can enter the “GAP-List”.

Service Description Block:

sap MSAP_O

service FMA2 READ_GAPLIST

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (UNSIGNS8 far *) Pointer to byte field (Iength hsa+1)
next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-101



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

FMA2 READ_GAPLIST Confirmation

Description:

The“GAP-List” is given over to the FDL-User.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

descr_ptr

 —

Poll Entry Block

Service Description

W .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

GAP-List:

Block:

MSAP 0

FMA2_READ_GAPLIST

CON

remains unchanged
OK, IV or NO
(UNSIGNS far *)
reserved for FDL
reserved for FDL
reserved for FDL

Identification possibility for FDL-User
Status
Pointer to byte field (length hsa + 1)

The GAP-List is entered into the byte field, given during the request. It only provides information about the gaps

between the addresses of the other active participants and yourself.
Bytei (0 < =i < = hsa) gives the status of participant i.

00 = Passive participant.
01 = Active participant, not ready for the logical token ring.
02 = Active participant, ready for the logical token ring.

03 = Active participant, currently on the logical token ring.

17 = Participant unknown, no answer.

255 = Participant is not in own GAP area.

Status Values:

Code
OK Positive conformation that the service has been carried out
NO No reply datawill be transfered
[\ Invalid parameter in request

Page 4-102

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

FMA2 EVENT Indication

Description:

The FDL informsthe FDL-User that an event or an error has occurred.

Data Structure:

Service Description Block

descr_ptr

Service Description Block:

sap MSAP_1
sarvice FMA2 EVENT
primitive IND

user_id 0..65535

status see below
descr_ptr not significant
next_descr reserved for FDL
link_descr reserved for FDL
resv reserved for FDL

Status Values:

FMA2 FAULT ADDRESS
FMA2 FAULT TRANSCEIVER
FMA2 FAULT TTO
FMA2 FAULT SYN
FMA2_FAULT OUT_OF RING
FMA2_GAP_EVENT

OO0~ WN B

I dentification possibility for FDL-User
Event or error

Multiple FDL addresses exist for this participant
Error in transmitter or receiver

Bustimeout, T+, expired

No receiving synchronization, Ty, expired

An active participant has left the logical ring

A new participant has been inserted into or removed from the GAP area

of the token ring

May 20, 1996 © 1995 PEP Modular Computers

Page 4-103



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

FMAZ2 IDENT Request

Description:
The FDL is given the task of reading its own identification, or that of another participant.
Note: Requesting the identification from remote stations is only supported by active stations.

Data Structure:

Service Description Block

descr_ptr

 —

Transmit/Receive Block

Transmit Buffer

send_data.buffer_ptr :>

(length 13 Bytes)

Reply Buffer

resource.buffer_ptr

(length 255 Bytes)

The FDL-User must provide a pointer to the transmit/receive block. This in turn points to the buffers containing the call
and answer telegrams. The buffer for the calling telegram must be 13 bytes long and that of the answer telegram 255
bytes (in order to accept the longest identification length).

Service Description Block:

sap MSAP_0O

service FMA2_IDENT

primitive REQ

user_id 0..65535 | dentification possibility for FDL-User

status not significant

descr_ptr (T_FDL_SR BLOCK far*) Pointer to transmit/receive block

next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Page 4-104 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_data.buffer_ptr
send_datalength
receive_data.buffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

not significant
not significant
not significant
0..126
NO_SEGMENT
not significant
not significant
(UNSIGN8 far*)
not significant
not significant
not significant
(UNSIGN8 far*)
255

Address of station to be identified
FMA2 service only in own segment

Pointer to transmit buffer
Length of user data

Pointer to reply buffer
Length of reply buffer

May 20, 1996

© 1995 PEP Modular Computers Page 4-105



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2 IDENT Confirmation
Description:
The FDL receives the requested identification or returns a negative status.

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr :©

Transmit Buffer

send_data.buffer_ptr ::> (longth 13 Bytes)
eng ytes

Reply Buffer

resource.buffer_ptr
FDL-Header

receive.data_buffer_ptr @ Identification

FDL-Trailer

The pointer receive.buffer_ptr shows the start of the identity field in the reply buffer.

Service Description Block:

sap remains unchanged

sarvice FMA2_IDENT

primitive CON

user_id remains unchanged Identification possibility for FDL-User

status OK, LR, NA, NLT, NR or IV see below

descr_ptr remains unchanged Pointer to transmit/receive block

next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Page 4-106 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_databuffer_ptr
send_datalength
receive_data.buffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

Identity Field:

Theidentification is placed into afield (identity field) having the following structure:

UNSIGNS
UNSIGNS
UNSIGNS
UNSIGNS
char[238]

Status Values:

not significant
not significant
not significant
remains unchanged
remains unchanged
not significant
not significant

remains unchanged Pointer to transmit buffer
remains unchanged

(USIGN8 far *) Pointer to identity field buffer
4..242 Length of identity data
remains unchanged

remains unchanged

Length vendor_name
Length controller_type
Length HW_release
Length SW_release
ASCII character string

Code Meaning
OK Identification could take place
LR L ocal resource limitation
NTL Own station not in logical token ring
NA The cdled participant did not answer
NR The identity datais not available at the called station
[\ Invalid parameter in request

May 20, 1996

© 1995 PEP Modular Computers

Page 4-107



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

FMA2_LSAP_STATUS Request

Description:

The FDL is given the task of supplying its SAP configuration, or determining that of another participant. Only active
participants support arequest for SAP configuration.

Note: Reguesting the SAP configuration from a remote station is only supported by active stations.

Data Structure:

Service Description Block

descr_ptr

 —

Transmit/Receive Block

send_data.buffer_ptr

resource.buffer_ptr

::> (length 13 Bytes)

Transmit Buffer

Reply Buffer

(length 19 Bytes)

) —

The FDL-User must provide a pointer to the transmit/receive block. This in turn points to the buffers containing the call
and answer telegrams. The buffer for the transmit telegram must be 13 bytes long and that of the answer telegram 19
bytes (to accept the 6 byte status information).

Service Description Block:

m .
sarvice
primitive
user id
status
descr_ptr
next_descr
link_descr
resrv

MSAP 0

FMA2 LSAP STATUS
REQ

0..65535

not significant

(T_FDL_SR BLOCK far*)
reserved for FDL

reserved for FDL

reserved for FDL

| dentification possibility for FDL-User

Pointer to transmit/receive block

Page 4-108

© 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_data.buffer_ptr
send_datalength
receive_data.buffer_ptr
receive_datalength
resource.buffer_ptr
resource.length

not significant
not significant
0..63 or DAULT_SAP
0..126
NO_SEGMENT
not significant
not significant
(UNSIGN8 far*)
not significant
not significant
not significant
(UNSIGN8 far*)
19

Desired Service Access Point
Address of station desired
FMA2 service only in own Segment

Pointer to transmit buffer
Length of user data

Pointer to reply buffer
Length of reply buffer

May 20, 1996

© 1995 PEP Modular Computers

Page 4-109



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2 LSAP_STATUS Confirmation
Description:
The FDL receives the requested configuration data or returns a negative status.

Data Structure:

Service Description Block

Transmit/Receive Block

descr_ptr :©

Transmit Buffer

send_data.buffer_ptr ::> (longth 14 Bytes)
eng ytes

Reply Buffer

resource.buffer_ptr
FDL-Header

receive.data_buffer_ptr @ LSAP Status

FDL-Trailer

If the status is OK, the pointer receive.buffer_ptr shows the start of the status field in the reply buffer.

Service Description Block:

sap remains unchanged

sarvice FMA2_LSAP_STATUS

primitive CON

user_id remains unchanged Identification possibility for FDL-User

status OK, RS, NA, NLT, NR or IV see below

descr_ptr remains unchanged Pointer to transmit/receive block

next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Page 4-110 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station
loc_add.segment
remote_sap
rem_add.gtation
rem_add.segment
serv_class

update status
send_databuffer_ptr
send_datalength

receive_data.buffer_ptr

receive_datalength
resource.buffer_ptr
resource.length

LSAP Status Field:

not significant

not significant
remains unchanged
remains unchanged
remains unchanged
not significant

not significant
remains unchanged
remains unchanged
(USIGN8 far *)

6

remains unchanged
remains unchanged

Pointer to transmit buffer

Pointer to L SAP status field
Length of LSAP status field
Pointer to reply buffer
Length of reply buffer

Theidentification is placed into afield (LSAP status field) having the following structure:

UNSIGN8
UNSIGNS8
UNSIGNS8
UNSIGNS8
UNSIGNS8
UNSIGNS8

access.station 0..126 or global 127
access.segment 0..63 or NO_SEGMENT
service 1 see below

service 2 see below

service 3 see below

service 4 see below

For the parameters service 1 to service 4 the following coding is used:

B7 B6 B5 B4 Service B3 B2 B1 BO Role
0 0 0 0 SDA 0 0 0 0 Initiator
0 0 0 1 SDN 0 0 0 1 Responder
0 0 1 1 SRD 0 0 1 0 Both
0 1 0 1 CSRD 0 0 1 1 Not activated
Status Values:
Code Meaning
OK Status reading could take place
RS Addressed participants SAP not active
NTL Own station not in logical ring
NA The called participant did not answer
NR The status data is not available at the called station
[\ Invalid parametersin request

May 20, 1996

© 1995 PEP Modular Computers

Page 4-111



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2 LIVELIST Request

Description:

The FDL istask with reading a“Live-List”, i.e. alist of participants currently active on the bus.
Note: This service is only supported by active (Master) stations.

Data Structure:

Service Description Block

Byte Field

descr_ptr :©

The FDL-User points to a byte field with the length HSA+1 = 127 into which the FDL can enter the Live-List.

Service Description Block:

sap MSAP_0O

service FMA2_LIVELIST

primitive REQ

user_id 0..65535 | dentification possibility for FDL-User
status not significant

descr_ptr (UNSIGN8 far*) Pointer to byte field HSA+1
next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Page 4-112 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

FMA2 LIVELIST Confirmation

Description:

The“Live-List” or a negative statusis given to the FDL-User.

Note: This service is only supported by active (Master) stations.

Data Structure:

Service Description Block

descr_ptr

 —

Byte Field

Service Description

W .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

Live-List:

Block:

remains unchanged

FMA2 READ LIVELIST
CON

remains unchanged

OK, LR, NLT or IV
remains unchanged
reserved for FDL

reserved for FDL

reserved for FDL

Identification possibility for FDL-User
see below
Pointer to read Live-List

The Live-List is entered into the byte field, given during the request.

Bytei (0 < =i <= 126) gives the status of participant i.

00 = Passive participant.

01 = Active participant, not ready for the logical token ring.

02 = Active participant, ready for the logical token ring.

03 = Active participant, currently on the logical token ring.

17 = Participant unknown, no answer.

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
LR None or insufficient operational resources are available locally
NLT Local partner not in logical ring or has left bus
[\ Invalid parameter in request

May 20, 1996

© 1995 PEP Modular Computers

Page 4-113



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2_ACTIVATE_SAP Request
Description:
Thelocal Service Access Point (SAP) is activated and configured.

If an SAP for response functions of the SRD or CSRD service is required, the SAP is configured viathe
FMA2_ACTIVATE_RSAP service call.

Data Structure:

Service Description Block

SAP Description Block

descr_ptr :©

SAP Block

sap_block_ptr :>

The FDL-User supplies a pointer to the SAP description block of type T_FDL_SAP_DESCR, thisin turn pointsto a
SAP block of type T_FDL_SAP_BLOCK. The SAP description block and the SAP block remain in the FDL until the
service point is deactivated.

Service Description Block:

sap MSAP_2

service FMA2_ACTIVATE_SAP

primitive REQ

user_id 0..65535 | dentification possibility for FDL-User
status not significant

descr_ptr (T_FDL_SAP _DESCR far *)  Pointer to SAP description block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

SAP Description Block (T_FDL_SAP_DESCR):

sap nr 0..63 or DEFAULT_SAP SAP to be activated
rem_add.station 0..126 or global address 127 Access protection for responder function
rem_add.segment 0..63 or NO_SEGMENT Access protection for responder function
ga INITIATOR or RESPONDER or
BOTH_ROLES or SERVICE_NOT_ACTIVATED
«n INITIATOR or RESPONDER or
BOTH_ROLES or SERVICE_NOT_ACTIVATED
gd INITIATOR or SERVICE_NOT_ACTIVATED
cad INITIATOR or SERVICE_NOT_ACTIVATED
Services reserved for FDL
sap_block_ptr (T_FDL_SAP_BLOCK far*)
resrc_ptr not significant
resrc_ctr not significant
sema reserved for FDL

Page 4-114 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

SAP Block (T_FDL_SAP_BLOCK):

max_len sda req low
max_len sda req high
max_len sda ind low
max_len_sda ind_high
max_len sdn_req low
max_len sdn_req high
max_len sdn ind low
max_len_sdn ind_high
max_len srd_req low
max_len _srd req high
max_len srd _con low
max_len_srd_con_high

0
0
0
0
0
0..
0
0
0
0
0
0

.242
.242
.242
.242
.242
242
.242
.242
.242
.242
.242
.242

Max.
Max.
Max.
Max.
Max.
Max.
Max.
Max.
Max.
Max.
Max.
Max.

length of user data by SDA.req low
length of user data by SDA.req high
length of user data by SDA.ind low
length of user data by SDA.ind high
length of user data by SDN.req low
length of user data by SDN.reqg high
length of user data by SDN.ind low
length of user data by SDN.ind high
length of user data by SRD.req low
length of user data by SRD.req high
length of user data by SRD.con low
length of user data by SRD.con high

May 20, 1996

© 1995 PEP Modular Computers

Page 4-115



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2 ACTIVATE_SAP Confirmation

Description:
The FDL confirms activation of the Service Access Point, or an error-status is returned.

Data Structure:

Service Description Block

descr_ptr

In the event of an error, the data structure received during the request is returned. A positive confirmation (an “OK” status)
results in only the Service Description Block being returned.

Service Description Block:

sap remains unchanged

srvice FMA2_ACTIVATE_SAP

primitive CON

user_id remains unchanged Identification possibility for FDL-User
status OK,NOor IV see below

descr_ptr NULL By error remains unchanged

next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Status Values:

Code Meaning
OK The SAP could be accessed in the desired way
NO The SAP could not be activated, or is dready active
[\ Invalid parameter in request

Page 4-116 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_ACTIVATE_RSAP Request
Description:

A local Service Access Point is activated and configured for a responder function with the SRD and CSRD services.

Data Structure:

Service Description Block

SAP Description Block

descr_ptr :©

RSAP Block

sap_block_ptr :>

The FDL-User supplies a pointer to the SAP description block of the T_FDL_SAP_DESCR type, thisin turn points to
aRSAP block of the T_FDL_RSAP_BLOCK type. The SAP description block and the RSAP block remain in the FDL
until the service point is deactivated.

Service Description Block:

sap MSAP_2

service FMA2 ACTIVATE RSAP

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (T_FDL_SAP_DESCR far*) Pointer to SAP description block
next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

SAP Description Block (T_FDL_SAP_DESCR):

sap_nr 0..63 or DEFAULT_SAP SAPto be activated

rem_add.gtation 0..126 or global address 127 Access protection during responder function
rem_add.segment 0..63 or NO_SEGMENT Access protection during responder function
ga SERVICE_NOT_ACTIVATED

an SERVICE_NOT_ACTIVATED

gd RESPONDER

c3d SERVICE_NOT_ACTIVATED

services reserved for FDL

sap_block_ptr (T_FDL_RSAP_BLOCK far*)

resrc_ptr not significant

resc_ctr not significant

sema reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-117



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

RSAP Block (T_FDL_RSAP_BLOCK):

indication_mode

max_len upd_req low
max_len upd_req high
max_len sdr_ind low
max_len_sdr_ind_high

upd_buf_low
upd_buf_high
telegram_low
telegram_high
transmit_low
transmit_high
marker_low
marker_high
fcs low
fcs_high

ALL or DATA
0..242
0..242
0..242
0..242
not significant
not significant
not significant
not significant

Max. length of user databy REPLY _UPDATE.req low
Max. length of user databy REPLY_UPDATE.req high

Max. length of user data by SRD.ind low
Max. length of user data by SRD.ind high

reserved for FDL
reserved for FDL
reserved for FDL
reserved for FDL
reserved for FDL
reserved for FDL

Page 4-118

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2 _ACTIVATE_RSAP Confirmation

Description:

Thelocal station’s FDL confirms activation of the Service Access Point for a responder function under SRD or CSRD
services, or returns an error status.

Data Structure:

Service Description Block

descr_ptr

In the event of an error, the data structure received during the request is returned. A positive confirmation (an “OK” status)
results in only the Service Description Block being returned.

Service Description Block:

sap remains unchanged

srvice FMA2_ACTIVATE_RSAP

primitive CON

user_id remains unchanged Identification possibility for FDL-User
status OK,NOor IV see below

descr_ptr NULL In event of error remains unchanged
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Status Values:

Code Meaning
OK The Service Access Point could be activated in the desired way
NO The Service Access Point could not be activated in the desired way or
isdready activated
[\ Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-119



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

FMA2_DEACTIVATE_SAP Request

Description:
The FDL has the task of deactivating alocal Service Access Point.

Data Structure:

Service Description Block

SAP Deactivation Block

descr_ptr :©

The FDL-User provides a pointer to the SAP deactivation block, in which the Service Access Point to be deactivated is
defined.

Service Description Block:

sap MSAP_2

service FMA2 DEACTIVATE SAP

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (T_FDL_DEACT _SAPfar*) Pointer to SAP deactivation block
next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

SAP Deactivation Block (T_FDL_DEACT_SAP)

ssap 0..63 or DEFAULT_SAP Service Access Point to be deactivated
sap_descr_ptr not significant

Page 4-120 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2 _DEACTIVATE_SAP Confirmation
Description:

The FDL confirms the deactivation of the Service Access Point and returns all data structures that were assigned to this
Service Access Point, or an error statusis flagged.

Data Structure:

Service Description Block

T_FDL_DEACT_SAP
descr_ptr :© T_FDL_SAP_DESCR
sap_descr_ptr e T_FDL_(R)SAP_BLOCK
sap_block_ptr @
resrc_ctr
resrc_ptr

=

T_FDL_SERVICE_DESCR
T_FDL_SR_BLOCK

~| descr_ptr ;© Receive Buffer
’ buf_pt
next_descr )—ﬂ resource.buf_ptr —
 m—

:

Linked Resources for Indications (Quantity =
resrc_ctr)

The SAP deactivation block (T_FDL_DEACT_SAP) contains a pointer to the SAP description block, which as during
the SAP activation points to the SAP block (T_FDL_SAP_BLOCK or T_FDL_RSAP_BLOCK).

Additionally, the parameter resrc_ptr in the SAP description block gives details about the “ chain” of linked resources
needed to process the indications assigned to this Service Access Point, and given to the FDL through the use of the
PUT _RESRC TO _FDL service.

May 20, 1996 © 1995 PEP Modular Computers Page 4-121



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

Service Description Block:

sap remains unchanged

srvice FMA2_DEACTIVATE_SAP

primitive CON

user_id remains unchanged | dentification possibility for FDL-User
status OK,NOor IV see below

descr_ptr remains unchanged Pointer to SAP deactivation block
next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

SAP Deactivation Block (T_FDL_DEACT_SAP)

ssap remains unchanged To deactivate the Service Access Point
sap_descr_ptr (T_FDL_SAP_DESCR far *) Pointer to SAP description block

Status Values:

Code Meaning
OK The Service Access Point is deactivated
NO The desired Service Access Point does not exist
[\ Invalid parameter in request

Page 4-122 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

45.8 Services for the Administration of the Resources

The layer 2 software requires areceiver buffer, into which the incoming telegrams are stored together with their respective
parameter blocks, where also the parameters for the indications may be entered.

The FDL-User is therefore responsible in ensuring that these resources are always available (in layer 2) in sufficient
forms. For the handover of resources to the FDL and to take back resources no longer required, three services are provided.

These three services are described in the following pages.

May 20, 1996 © 1995 PEP Modular Computers Page 4-123



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

WAIT_FOR_FMA2 EVENT Request
Description:
The FDL-User supplies a resource to the FDL to process FMA2_EVENTSs.

Data Structure:

Service Description Block

Service Description Block for FMA2_Event

descr_ptr j©

Thefirst Service Description Block is returned for the confirmation. The second remains in the FDL for the processing of
the FMA2_EVENTS. Only one resource can be given to the FDL at atime.

The FMA2_EVENTS are stored in the FDL in aring buffer. After receipt of aresource the oldest FMA2_EVENT is
announced.

Service Description Block:

sap not significant

service WAIT_FOR FMA2 EVENT

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (T_FDL_SERVICE DESCRfar *) Pointer to Service Description Block
next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Handed Over Service Description Block:

sap not significant

service not significant

primitive not significant

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr not significant

next_descr reserved for FDL

Page 4-124 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

WAIT_FOR_FMA2 EVENT Confirmation

Description:

The provision of aresource for FMA2_EVENTS processing is confirmed, or an error status flagged.

Data Structure:

Service Description Block

descr_ptr

If statusis“OK” only the Service Description Block for the WAIT_FOR _FMA2_EVENT servicesis returned. The hand-
over Service Description Block remainsin the FDL.

Service Description Block:

mp .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

Status Values:

remains unchanged

WAIT_FOR_FMA2_EVENT

CON

remains unchanged Identification possibility for FDL-User
OK, LRor IV see below

NULL In the event of error remains unchanged

reserved for FDL
reserved for FDL
reserved for FDL

Code Meaning
OK Resource accepted
LR Resource not accepted, asthe FM A2 already contains aresource
[\ Invalid parameter in request

May 20, 1996

© 1995 PEP Modular Computers Page 4-125



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

WITHDRAW_EVENT Request

Description:
The FDL-User withdraws the resource from the FDL to process FMA2_EVENTS.

Data Structure:

Service Description Block

descr_ptr

Service Description Block:

sap not significant

service WITHDRAW_EVENT

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr not significant

next_descr reserved for FDL

link_descr reserved for FDL

resrv reserved for FDL

Page 4-126 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

WITHDRAW_EVENT Confirmation

Description:

The resource for FMA2_EVENTS processing is confirmed, or an error status flagged.

Data Structure:

Service Description Block

descr_ptr

Service Description Block:

m .
sarvice
primitive
user_id
status
descr_ptr
next_descr
link_descr
resrv

Status Values:

remains unchanged

WITHDRAW_EVENT

CON

remains unchanged Identification possibility for FDL-User
OK, LRor IV Status

(T_FDL_SERVICE _DESCR far *) Pointer to resource for FMA2_EVENT
reserved for FDL
reserved for FDL
reserved for FDL

Code Meaning
OK Resource accepted
LR Resource not available
[\ Invalid parameter in request

May 20, 1996

© 1995 PEP Modular Computers

Page 4-127



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

PUT_RESRC_TO FDL Request
Description:

The FDL-User returns the FDL resources to process SDA, SDN and SRD indications (of a certain Service Access Point)
or to process a CSRD confirmation of a defined Poll-List entry.

Data Structure:

Service Description Block

T_FDL_RESRC_DESCR

descr_ptr ::>

no_of_resources

resrc_ptr —‘

T_FDL_SERVICE_DESCR

T_FDL_SR_BLOCK

] Receive Buffer
| S—>> descr_ptr ——

resource.buf_ptr ;©

[ s—> —]
_‘  —

Linked Resources for Indications (Quantity =

resrc_ctr)
Service Description Block:
sap 0..63 or DEFAULT_SAP SAP to which the resources are assigned
sarvice PUT_RESRC_TO_FDL
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_RESRC DESCR far *) Pointer to resources descriptor
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-128 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Resources Descriptor (T_FDL_RESRC_DESCR)

dsp 0..62 or DEFAULT_SAP Service Access Point and
rem_add.station 0..126 partner addressto identify the poll
rem_add.segment 0..62 or NO_SEGMENT list entry in the Poll-List SAP
nr_of resources >0 Quantity of the supplied resources
resrc_ptr (T_FDL_SERVICE_DESCR far *) Pointer to resource list

May 20, 1996 © 1995 PEP Modular Computers Page 4-129



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

PUT_RESRC TO _FDL Confirmation
Description:

The FDL confirms the acceptance of the resources for the required Service Access Point or Poll-List entry, or an error
statusis returned.

Data Structure:

Service Description Block

T_FDL_RESRC_DESCR

descr_ptr :©

If statusis“OK” only the Service Description Block and the resource description block is returned; in the event of an
error occurring the complete structure supplied during the request is returned.

The resource description block, therefore, only needs to be provided once and can be used many times again for the
transfer of resources as required.

Service Description Block:

sap remains unchanged

service PUT_RESRC_TO _FDL

primitive CON

user_id remains unchanged Identification possibility for FDL-User
status OK,NOor IV see below

descr_ptr (T_FDL_RESRC DESCR far *) Pointer to resource description block
next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Resources Description (T_FDL_RESRC_DESCR)

dsap remains unchanged
rem_add.gtation remains unchanged
rem_add.segment remains unchanged
nr_of_resources remains unchanged
resrc_ptr Null In the event of error remains unchanged

Status Values:

Code M eaning
OK The resources are accepted
NO The desired Service Access Point or Poll-List does not exist
v Invalid parameter in request

Page 4-130 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

WITHDRAW_RESRC FROM_FDL Request
Description:
The resources supplied for a particular Service Access Point or Poll-List entry are to be withdrawn.

Data Structure:

Service Description Block

T_FDL_RESRC_DESC

descr_ptr :© =

Service Description Block:

sap 0..63 or DEFAULT_SAP SAP from which the resources are withdrawn
service WITHDRAW_RESRC FROM_FDL

primitive REQ

user_id 0..65535 Identification possibility for FDL-User
status not significant

descr_ptr (T_FDL_RESRC DESCR far *) Pointer to resource description block
next_descr reserved for FDL

link_descr reserved for FDL

resv reserved for FDL

Resource Description (T_FDL_RESRC_DESCR)

dsp 0..62 or DEFAULT_SAP Service Access Point and
rem_add.gtation 0..126 partner address to identify the Poll-
rem_add.segment 0..62 or NO_SEGMENT List entry in Poll-List SAP
nr_of_resources not significant

resrc_ptr not significant

May 20, 1996 © 1995 PEP Modular Computers Page 4-131



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

WITHDRAW_RESRC_FROM_FDL Confirmation

Description:

The FDL gives the resources from the designated Service Access Point or Poll-List entry back or flags an error status.

Data Structure:

Service Description Block

descr_ptr

T_FDL_RESRC_DESCR

 —

no_of_resources

resrc_ptr —‘

T_FDL_SERVICE_DESCR
T_FDL_SR_BLOCK

] Receive Buffer
descr_ptr >

resource.buf_ptr ;©

Service Description Block:

m .
sarvice
primitive
user id
status
descr_ptr
next_descr
link_descr
resrv

[ s—> =
_‘  —

Linked Resources for Indications (Quantity =

resrc_ctr)
remains unchanged
WITHDRAW_RESRC_FROM_FDL
CON
remains unchanged | dentification possibility for FDL-User
OK, LRor IV Status
remains unchanged Pointer to resources description

reserved for FDL
reserved for FDL
reserved for FDL

Page 4-132

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Resources Description (T_FDL_RESRC_DESCR)

dsp remains unchanged

rem_add.station remains unchanged

rem_add.segment remains unchanged

nr_of resources >=0 Number of returned resources
resrc_ptr (T_FDL_SERVICE_DESCR far *) Pointer to resource list

Status Values:

Code Meaning
OK The resources are accepted
LR The desired Service Access Point or Poll-List entry does not exist
[\ Invalid parameter in request

An application program structure using thepbl 21 | f. | library is shown overleaf.

May 20, 1996 © 1995 PEP Modular Computers Page 4-133



Chapter 4 Software Architecture

Profibus Layer 2 User’s Manual

Application on Master

Open PROFIBUS fd| Open BUS
device -

set bus fdl_req

parameters (FMA2_SET BUSPARAMETER)
wait for fdl_con_ind

confirmation

v

) fdl_req
activate SAP (FMA2_ACTIVATE_SAP)

\

wait for fdl_con_ind
confirmation

send data ‘Z%'Br:)q SDA-data
>y

wait for fdl_con_ind

confirmation

— repeat
yes

fdl_req
(FMA2_DEACTIVATE_SAP)

\

wait for fdl_con_ind

confirmation

close PROFIBUS | ¢4 close
device —

deactivate SAP

Application on Master/Slave

fdl_open SESiT:ePROFIBUS
fdl_req set bus

(FMA2_SET_BUSPARAMETER) | parameters

Y

fdl_con_ind wait for
confirmation
fdl_req i
(FMA2_ACTIVATE_SAP) activate SAP
fdl_con_ind wait for
confirmation
fdl_req ;
(PUT_RESRC_TO_FDL) walit
¢<
] wait for
fdl_con_ind confirmation/
indication

fdl_req
(PUT_RESRC_TO_FDL)

yes

%no

fdl_req deactivate SAP
(FMA2_DEACTIVATE_SAP) W

\

fdl_con_ind wait for
confirmation
fdl close close PROFIBUS
- device

Page 4-134 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

459 Parameterizing Layer 2
The user is alowed to modify several entriesin the following filesin order to adapt them to his application requirements:

/ PROFI NET/ BSP/ VI UC/ PBL2DESC/ pSMART_<n>. a (n =1,2,3)
/ PROFI NET/ BSP/ VI UC/ PBL2DESC/ pVI UC_<n>. a

/ PROFI NET/ BSP/ VMBO/ PBL2DESC/ pVMBO_<n>. a

/ PROFI NET/ BSP/ COMWON NFMDESC/ n1PROFI . a

/ PROFI NET/ BSP/ COVMON DATMODY busPB. a

Additionally, the utility pbmode provides the possibility to modify the bus parameter setting in the busPB data module or
during a running PROFIBUS application.

pSMART_<n>.a
pVIUC _<n>.a
pVM30_<n>.a

The user is alowed to change the following entries:

D CheckReq - Thisentry isthe flag to check send data service requests, such as SDA, SDN or SDR.

0x00 No parameter check in request services recommended when only Level 7 applications are running,
as Layer 7 also checks the parameters
0x01 - OxFF Parameter check recommended when Layer 2 applications are running

D Usel7 - Flagtouse L2 or L7 queue handling.

PEOFIBUS offers the user two levels of priority (LOW/HIGH) in order to deal with services. In the normal running of
the application, low prioity message cycles are dealt with. If an alarm status is transmitted, high priority message cycles
can be employed. High priority message cycles are dealt with first and , from atime viewpoint, can overtake low priority

message cycles.

If Layer 2 isdriven together with Layer 7, certain limitations must be taken into account when using high priority
message cycles. According to the PROFIBUS standards, Layer 7 tasks can only be carried out when a connection to a
station completed. The connection is always made before priority tasks. If ahigh priority messageis generated
immediately after the building of the connection, it could be that this message is dealt with before the connection
acknowledgement. In this case, the connection isimmediately cut off.

In order to deal with this problem, D_Usel. 7 must be set. The high and low priority queues can then be dealt with in
such away that no limitations of the choice of priority need occur under Layer 7.

0x00 L 2 queue handling, high and low priority request service support recommended when Layer 2
applications are running
0x01 - OxFF L7 queue handling, high priority request handling recommended in the same way aslow priority

reguests when only Layer 7 applications are running

D UseNLT - Flag to support NLT error handling.
0x00 No NLT handling recommended

0x01 - OxFF NLT error handling. The status NL T is signalled when aremote call cannot be generated due to the
fact that the active station does not join or was removed from the logical token ring.

D _Count NLT - Counter for NLT. Thisisonly used if D_UseNLT <> 0.

May 20, 1996 © 1995 PEP Modular Computers Page 4-135



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

n1PROFI.a

The following entry can be modified:

PB_SAP equ 60

Thisisthe selected PROFIBUS Service Access Point that is used for the OS-9/NET communication. It is recommended
to modify the value for PB_SAP only if this SAP must be used in a PROFIBUS application.

busPB.a

Thisfileis apure data file and contains all bus parameters that are related to the FMA2_SET BUSPARAMETER
service. From this assembler source file makef i | e shows various object files that are stored under different data names.
The module name isbusPB for al the data.

Function

open_PROFI inthe pbL2hl f. | library selectsthe bus parameters from the data module bus PB, and initiates the
service FMA2_SET_BUSPARAMETER.

This data module must be present in the OS-9 module directory if the function commands of thepbL2hl f . | library are
required when OS-9/PROFINET isinitiated or an application program is running. With aromable OS-9 the module
busPB can be present in the EPROM.

nmakef i | e generates various object files from the base file bus PB. a, whereby the following three different parameters
are pre-set when assembling is complete:

LOC_ADDR determines the bus parameter st at i on
MODE definesthe bus parameter i n_ri ng_desi red
PROFI selects the PROFIBUS devices /profi_ 1 or /profi_2

Thefollowing files are generated with nakef i | e:

bPB1 1 - bPB1_10 stations 10 data modules for PROFIBUS stations numbered 1-10; the device profi_1
and thus the interface MC68302 SCC#1 is defined as a PROFIBUS

connection.
bPB2_1 - bPB2_10 As above except using PROFIBUS device /profi_2.
bPB1_S DIP switch settings on the CXM or STAT-1 or STAT-2 areread and used to

define the local PROFIBUS station address.
The PROFIBUS deviceis/profi_1.

bPB2_S AsbPB1_S except that the PROFIBUS deviceis/profi_2.

bPB1 | DIP switch settings on the IUC board defines the PROFIBUS station address.
The PROFIBUS deviceis/profi_1.

bPB2_| As above except using PROFIBUS device /profi_2.
bPB1_M A pre-defined value in EEPROM on the SMART-I/O defines the PROFIBUS
station address.

The PROFIBUS deviceis/profi_1.

Page 4-136 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Chapter 4 Software Architecture

The user has the capability to influence the setting of the PROFIBUS bus parameters (eg. baud rate) by changing the
valuesin the data module busPB. The contents of the file busPB are in the following order:

BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.
BP_BLOCK.

station

stati on_nmask

segnment
baud rate

medi um red

tsl

m n_tsdr
max_t sdr
t qui

ttr

g

in_ring_desired

hsa

max_retry limt
t oken_hol d

i dent
devi ce

PB. st ati on

0..126

128

129

130

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

PB station

PB station_mask
PB_segment

PB baud _rate

PB nmedi um red

PB tsl

PB m n_tsdr

PB max_t sdr

PB_t qui

PB ttr

PB_g
PB_in_ring_desired
PB hsa

PB max_retry limt
PB t oken_hol d

PB i dent

PB devi ce

—— O O0CO0OO0OO0 " 0OSSsSO00CO0COOT

Thisvalueis defined by the LOC_ADDR parameter after initiating the
Assembler with - a=LOC_ADDR=<n>, the values for <n> can be:
0,1,2,...126, 128, 129, 130

Loca PROFIBUS station address

Thelocal station address is determined by one of the DIP switch settings of
the status boards, CXM-STAT1 or -STAT2.
Thisvalueislinked withPB_st ati on_mask.

Thelocal station address is defined by the DIP switch settings on the lUC
board. This definition can only be selected if the PROFIBUS is booted with
an IUC board fitted with on-board DIP switches. The valueread is linked to
PB station_nask.

Thelocal station addressis defined by a value stored in EEPROM. Thisvalue
can only be selected if PROFIBUS is running on a SMART 1/O board.

Note

Don't select station address = 0 if you are running OS-9/NET on PROFIBUS in parallel.

May 20, 1996

© 1995 PEP Modular Computers Page 4-137



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

PB stati on_nask

PB_segnent

PB baud_rate

PB nmedi um red

Thisisonly used when PB. st at i on>127.
Bit 7 is only controlled by parameter MODE
MODE is not specified or
MODE=0->hit7=0
MODE=1->hit7=1

Bit 6 depends on the value of bit 7.

If bit7=0:

mask bit for corresponding DIP-switch to define the station address.

The station mode depends on the chosen value of PB_i n_ri ng_desi r ed
(default = OxFF, active).

If bit7=1

value of corresponding DIP switch defines the value for

PB_i n_ri ng_desi r ed and therefore the station mode active or passive.

Bit 5 - bit 0: mask bits for corresponding DIPnswitches to define the station
address

Examples:

PB st ati on_mask =0x8F

bit 7 = 1 -> DIP switch 6 defines station mode

bit 4 - bit 0 =1 -> DIP switches 0 - 4 determine the station address

PB station_mask =0x7F
bit 7=0and bit 0- 6 =1 -> DIP switches 0 - 6 determine the station address

Loca segment address
0...63 or 255 (NO_SEGMENT)
Default: NO_SEGMENT

Baud rate, valid baud rate codes are:

0=9600 (K_BAUD_9 6)

1=19200 (K_BAUD_19 2)

2=93750 (K_BAUD_93 75)

3=187500 (K_BAUD_187_5)

4=500000 (K_BAUD_500)

Default: K_BAUD_187_5

Depending on the selected baud rate code following parametersin busPB. a
are preset with recommended values:

PB tsl

PB m n_tsdr

PB max_tsdr

PB_t qui

PB tset

PB ttr

PB_g

The values of these parameters with the exception of PB_g are calculated in
bit times. PB_g isamultiple factor of PB_ttr.

Valid values:

0: NO_REDUNDANCY

1: REDUNDANCY

Default: NO_REDUNDANCY

Page 4-138

© 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

PB t sl

PB m n_tsdr

PB max_tsdr

PB_t qui

PB tset

PB ttr

PB g

PB_in_ring_desired

PB hsa

PB max_retry limt

PB t oken_hol d

PB i dent

PB devi ce

Slot time: 1...65535
Default: 3500

Minimum station delay time: 1...65535
Default: 500

Maximum station delay time: 1...65535
Default: 1000

Modulator decouple time: 0...255
Default: 0

Set up time: 1...255
Default: 50

Target rotation time: 1...0xFFFFFF
Default: 100000

GAP update factor: 1...100
Default: 1

Desired role of station (passive/active)

0: passive station (FALSE)

OxFF: active station (TRUE)

Thevaueof PB_i n_ri ng_desi r ed depends on the r68 parameter MODE
and LOC_ADDR.

Highest station address: 2...126
Default: 20

Maximum telegram retries: 1...8
Default: 1

Token hold time (bit time)

0: No token hold

1...255: Token hold time

A token hold time is only recommended, if there are not more than two active
stations connected to the logical token ring.

Default: 0

Offset pointer to the identity field

Offset pointer to the PROFIBUS device name. The PROFIBUS device name
depends on the value of the r68 parameter PROFI .

Possible names are;

/profi_1

[profi_2

/profi_3

May 20, 1996

© 1995 PEP Modular Computers Page 4-139



Chapter 4 Software Architecture Profibus Layer 2 User’'s Manual

pbmode

The pbmaode utility provides the possibility to modify the bus parameters defined in the busPB data module. Normally the
modifications are only effective when the changes are made before a PROFIBUS application has been run. Bus parameter
changes can be made dynamically during the running of a PROFIBUS application using the option ‘-c’.

Function

Modify the bus parameters.

Syntax

pbnode <opti ons>

Options
Option Parameter Value
-p Default parameter dependent on the baud rate
€ Change parameter dynamically on Layer 2
-h= Highest station address 2..126
-m= Inring desired 0 (FALSE), <> 0 (TRUE)
& Station address 0 .. 126, 128, 129, 130
0 .. 126: define station address
128: CxM-STATx  define station address by DIP switch
129: IlUc define station address by DIP switch
130: SMART I/O  define station address by DIP switch
W Write station address 0..126
Valid only if modification is possible
v= Station mask 0X00, OxFF
-s= Station segment 0 .. 63/255
-b= Baud rate 01,234
-0= Gap update 1..100
- Maximal retry limit 1..8
&= Token delay 0 (no delay), 1 .. 255
-tt= Target rotation time (trr) 1 .. 16777215 (OXFFFFFF)
-ts Slot time (tsl) 1 .. 65535 (OXFFFF)
-7= Minimum station delay time (min_tsdr) 1 .. 65535 (OxFFFF)
-7= Maximum station delay time (max_tsdr) 1 .. 65535 )OxFFFF)
-toF Modulator decouple time (tqui) 0 .. 255 (OxFF)
-te= Exposure time (tset) 1.. 255 (OxFF)

Page 4-140 © 1995 PEP Modular Computers May 20, 1996



PROFIBUS Layer 2 User’s Manual Chapter 5 Release Notes

5. RELEASE NOTES

OS9/PROFINET - Edition History
21/12/92:
OS9/PROFINET V3.1 first release.

Current edition numbers of PROFIBUS modules:

phy PROFI edition #9
dr vPROFI edition #4
pr of i man edition #6
nf PROFI edition #1
CcomPROFI edition #5
12/02/93:

OS9/PROFINET V3.1/11.1.
New:

PROFIBUS Layer 7 is now supported.
Major changes:

- Thestructure of T_FDL_SEVICE DESCR defined in pbL2t ype. h has been extended, all PROFIBUS Layer 2
applications must be recompiled with the updated pbL2t ype. h file.

- Thereisanew file structure:

All OS-9/NET specific files are now included under the directory NET/ (e.g. nfm, chp ...). The others remain under
the PROFINET/ directory.

Current edition numbers of PROFIBUS modules:

phy PROFI edition #10
dr vPROFI edition #5
pr of i man edition #7
nf PROFI edition #1
conPROFI edition #6
nmodPBL7 edition #3
srvPBL7 edition #1

May 20, 1996 © 1995 PEP Modular Computers Page 5-1



Chapter 5 Release Notes PROFIBUS Layer 2 User’s Manual

Note: PROFIBUS applications compiled with pbL2type.h and/or using library pbL2hif.l from
OS-9/PROFINET V3.1 do not run with the new PROFIBUS modules. If thisis the case, recompile with updated files.

The behaviour of PROFIBUS Layer 2 service FMA2_SET_BUSPARAMETER has been changed, refer to example
program sda_deno. c.

Do not mix PROFIBUS modul es from different releases.

VIUC:
VIUC-board equipped with a PEPbug Monitor (up to Version 568-3).

If the upper SCC port of the VIUC is used as the PROFIBUS interface, the initialization of that port by the PEPbug
Monitor disturbs the PROFIBUS protocol of the remaining PROFIBUS stations that are connected to the network as
long as the VIUC upper port is not re-initialized by the PROFIBUS driver.

22/06/93:
OS9/PROFINET V3.1/11.2.
Major changes:

- Modificationsin module phy PROFI :
Task using PROFIBUS services could hang in system call for an event (occurred only when alarge amount of noise
was present on the PROFIBUS cable).
Support of 500 KBaud.

- Modificationsin module pr of i man:
User signals are now returned.

- Maodificationsin the PROFIBUS device descriptors and “busPB.a” file are now allowed to run 500 KBaud (the
PROFIBUS board must be equipped with a MC68302-20MHz and a 24MHz oscillator).

- Filenames of “busPB” modules, generated from the “busPB.a” file, adapted to M S-DOS file name conventions
(e.g. busPB1 1 now bPB1_1).

- Library pbL2hl .| extended:
Severa functions added.
Modified behaviour of SRD Indications:
Responser SAP initialized with indication_mode == ALL (instead of indication_ mode == DATA).

- Application “pbmode” added to modify bus parametersin the “busPB” data module. This affects only the PROFIBUS
initialization. If the modification is performed before initialization, atask opens the PROFIBUS and the task must
use the function call “open_PROFI” of the pbL2hlf.l library for opening.

Current edition numbers of PROFIBUS modules:

phy PROFI edition #14
dr vPROFI edition #5
pr of i man edition #8
nf PROFI edition #1
conPROFI edition #6
nmodPBL7 edition #3
srvPBL7 edition #1

Page 5-2 © 1995 PEP Modular Computers May 20, 1996



PROFIBUS Layer 2 User’s Manual Chapter 5 Release Notes

20/01/94:
OS9/PROFINET V3.1/11.3

PROFIBUS V3./11.3 on aVM30 or a (V)IUC can be used with the OS-9 Professional V2.4/12.2.
OS-9/RAMNET V1.8 must be installed when using PROFIBUS V3.1/11.3 on a VIUC as aVMEbus Slave.

Current edition numbers of PROFIBUS modules:

phy PROFI edition #15
dr vPROFI edition #5
pr of i man edition #8
nf PROFI edition #2
conPROFI edition #8
nmodPBL7 edition #4
srvPBL7 edition #2

Major changes:

- The PROFIBUS implementation runs now also on aVM30 with a MC68030-CPU and installed OS9-module
"ssm". The following modules/files have now been changed:
nf PROFI
conPROFI
srvPBL7
nodPBL7
pbL7I1f.I

- Modifications in module phyPROFI (ed #15):
Automatic recognition of CPU frequency for MC68302 and external frequency on TIN1-PIN of MC68302
-> one PROFIBUS device descriptor for aVM30 or (V)IUC supports both variants:
MC68302 on VM 30: CPU frequency External frequency

16 MHz 12 MHz

20 MHz 24 MHz
MC68302 on (V)IUC: CPU frequency External frequency

16.67 MHz 12 MHz

20 MHz 24 MHz

Theentries"D_CPUFreq" and "D_EXTFreq" in the PROFIBUS device descriptor are ignored by the PROFIBUS driver.

- Maodifications in module busPB (ed #2):
Values for bus parameters are changed according to the recommandations of the PNO

- Bugfixesin library pbL2hif.| :
function "open_PROFI" returns now zero instead of the PROFIBUS station number, if no error occurred
function "close PROFI" returns zero if no error occurred
-> the Layer 2 application examples are re-linked with the updated library

- Modification in file /PROFINET/ROM/VIUC/makefile:
"fpu" moduleis now included

May 20, 1996 © 1995 PEP Modular Computers Page 5-3



Chapter 5 Release Notes PROFIBUS Layer 2 User’s Manual

20/07/94:
OS9/PROFINET V3.1/11.4

PROFIBUS V3.1/11.4 on aVM30 or a (V)IUC can be used with the OS-9 Professional V2.4/12.2.
The OS-9/RAMNET V1.8 must be installed when using PROFIBUS V3.1/11.4 on aVIUC as a VMEbus Save.

Current edition numbers of PROFIBUS modules:

phy PROFI edition #16
dr vPROFI edition #5
pr of i man edition #8
nf PROFI edition #2
conPROFI edition #8
nmodPBL7 edition #4
srvPBL7 edition #3

Major changes:

- Bugfix in library pbL7IIf.l

- Application examples changes to Ultra-C notation
20/11/94:

OS9/PROFINET V3.12/11.0

PROFIBUS V3.12/11.0 on VM30/(V)IUC or SMART-I/O can be used with OS-9 Professional V3.0.

Current edition numbers of PROFIBUS modules:

phy PROFI edition #17
dr vPROFI edition #6
pr of i man edition #9
nf PROFI edition #2
conPROFI edition #9
nmodPBL7 edition #5
srvPBL7 edition #3

Major changes:

- Update of Profibus Layer 2 and 7to V3.12

- Support of SMART-1/O

Note:

- Dueto changesin Layer 2 and Layer 7 definition files and in libraries pbL2hif.I and pbL7IIf.l, applications must be
re-compiled. Modifications in source code are possibly necessary, because structure definitions for Layer 7 services

have been changed.

- Important modification in Layer 2:
use GLOBAL_ADDR instead of ALL, when al stations should be accessed.

Page 5-4 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual

Appendix A Status Values

APPENDIX A STATUS VALUES

Thefollowing list provides the “general” meanings of the status values. Where localization occurs, the deviations are
described in their respective service description sections.

Name Code Description
OK: 00 Positive confirmation that service(s) is carried out
UE: 01 Interface error
RR: 02 The partner did not have adequate operationa resources
RS: 03 Partners service, access authorization or SAP, is not activated
HI: 05 update status for SRD.ind: High priority reply data has been collected
LO: 06 update status for SRD.ind: Low priority reply data has been collected
update_status for CSRD.con: Data has been transfered in reply telegram
DL: 08 For SRD and CSRD services.Reply Data low available, positive confirmation of data sent
NR: 09 For SRD and CSRD services: No Reply Data available, positive confirmation of data sent
DH: 10 For SRD and CSRD services: Reply Data high available, positive confirmation of data sent
RDL: 12 For SRD and CSRD services: Reply Datalow available, negative confirmation of data sent
RDH: 13 For SRD and CSRD services: Reply Data high available, negative confirmation of data sent
LS: 16 Service or local Service Access Point not activated
NA: 17 Addressed partner does not respond
NLT: 18 Own station not in logical token ring or has left bus
NO: 19 update statusfor SRD.ind: No reply datais transfered
update_status for CSRD.con: No reply dataistransfered in reply telegram
LR: 20 No or insufficient operational resources are available locally
IV: 21 Invalid parameter in request
May 20, 1996 © 1995 PEP Modular Computers Page A.1



Appendix A Status Values Profibus Layer 2 User’'s Manual

This page has been intentionally left blank

Page A-2 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix B Definition of Constants

APPENDIX B DEFINITION OF CONSTANTS

Theinclude data“pbL2con. h” contains al constants needed to call up layer 2 software.

The meanings of the constants are as described by their respective services.

/*****************************************************************************

* *
* I ncl ude File pbL2con.h *
* *
* *

* The include file pbL2con.h contains all constants that the user needs *
* for programm ng LAYER2. *

* *

*

****************************************************************************/

/****************************************************************************

* *
* Edition H story *
* oo ————== *
*

# Dat e Conment s by *
e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e - - *
01 11/03/92 First witten HAH *

*

02 01/ 27/ 93 Added new service definition: HAH *

#defi ne FMA2_CHANGE_BUPARAMETER  Ox1F*

03 12/23/93 Added ident definition: HWE *
#def i ne _PBL2CON_HEADER and surroundi ng #if ndef *

*

***************************************************************************/

#i f ndef _PBL2CON HEADER /* include it only once */
#defi ne _PBL2CON HEADER

May 20, 1996 © 1995 PEP Modular Computers Page B-1



Appendix B Definition of Constants Profibus Layer 2 User’s Manual

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of Bool ean Constants +

+ +

R i i */

#defi ne TRUE -1
#defi ne FALSE 0

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of the Service Primtives +

+ +

R i i */
#defi ne REQ 0

#defi ne CON 1

#define IND 2

| X e e e e e e i e e e e e e e e e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e — o
+ +

+ Definition of Constants for the Length of FDL Tel egram Header and +
+ FDL Tel egram Trail er +

+ +

R i i */

#defi ne FDL_COFFSET11
#defi ne FDL_TRAI LER 2

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of Constants for the Length of |IDENT Tel egram and +
+ LSAP St atus Tel egram +

+ +

R i i */

#def i ne | DENT_TELE_LEN255
#define LSAP_STATUS TELE LENFDL_OFFSET + FDL_TRAILER + 6

Page B-2 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix B Definition of Constants

+ +
+ Definition of the Service Codes for FDL and FMA2 Services +

+ +
e */
#defi ne SDA 0x01

#defi ne SDN 0x02

#defi ne SRD 0x03

#defi ne CSRD 0x04

#defi ne LOAD_POLL_LI STOx05
#defi ne DEACT_POLL_LI STOx06
#defi ne POLL_ENTRYOxO7
#defi ne SEND_UPDATEOx08
#defi ne REPLY_UPDATEOx09

#defi ne FMA2_RESET 0x10

#defi ne FMA2_SET_BUSPARAMETER 0x11
#defi ne FMA2_SET_STATI STIC CTR 0x12
#def i ne FMA2_READ BUSPARAVETEROX13
#def i ne FMA2_READ_STATI STI C_CTR 0x14
#def i ne FMA2_READ TRROX15

#def i ne FMA2_READ LASOx16

#def i ne FMA2_READ GAPLI STOx17

#def i ne FMA2_EVENTOx18

#def i ne FMA2_| DENTOX19

#defi ne FMA2_LSAP_STATUSOX 1A

#define FMA2_LI VELI STOX1B

#def i ne FMA2_ACTI VATE_SAP 0x1C

#def i ne FMA2_ACTI VATE_RSAP 0x1D
#def i ne FMA2_DEACTI VATE_SAP Ox1E
#defi ne FMA2_CHANGE_BUSPARAMETER Ox1F

#define WAI T_FOR_FMA2_EVENTOx20
#def i ne PUT_RESRC_TO FDLOx21

#def i ne W THDRAW RESRC_FROM FDLOx22
#def i ne W THDRAW EVENTOX 23

May 20, 1996 © 1995 PEP Modular Computers Page B-3



Appendix B Definition of Constants

Profibus Layer 2 User’s Manual

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of Confirmation Status and Update Status of +

+ SRD- | ndi cations and CSRD- Confirmations. +

+ +

e e I */
#defi ne K 0x00

#defi ne UE 0x01

#define RR 0x02

#define RS 0x03

#define Hi 0x05

#define LO 0x06

#defi ne DL 0x08

#define NR 0x09

#defi ne DH Ox0a

#defi ne RDL 0x0c

#defi ne RDH 0x0d

#defi ne LS 0x10

#defi ne NA Ox11

#defi ne NLT 0x12/* corresponds to status DS in DIN 19245 Teil 1 */
#defi ne NO 0x13

#define LR 0x14

#define IV 0x15

| X e e e e e e i e e e e e e e e e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e — o
+ +

+ Definition of Broadcast SAP, Default SAP and FMA2 SAPs +

+ +

R i i */
#defi ne BRCT_SAPOx3F

#defi ne DEFAULT_SAP 128

#defi ne MSAP_O OxFO

#defi ne MSAP_1 OxF1

#defi ne MSAP_2 OxF2

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of Constant NO SEGVENT (for conponent 'segment' in +
+ type T_FDL_ADDR) +

+ +

R i i */

#defi ne NO_SEGQVENTOxFF

Page B-4

© 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix B Definition of Constants

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of Constants for services FMA2_SET_BUSPARAMETER and +
+ FMA2_READ_BUSPARAMETER +

+ +

R i i */
[* Baud rate ---------mmmmmm oo oo */

#define K_BAUD 9 60
#define K_BAUD 19 21
#define K_BAUD 93_752
#define K_BAUD 187_53
#def i ne K_BAUD_5004

[* RedundanCy -----------mmmmmmm oo */

#defi ne NO_REDUNDANCY O
#defi ne REDUNDANCY 1

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of Constants for SAP Activation +

+ +

R i i */
[* SBrvicCe tYPe -----mmmmmmm o m oo */

#defi ne SDA_RESERVEDOx00
#defi ne SDN_RESERVEDOx01
#defi ne SRD_RESERVEDOx03
#defi ne CSRD_RESERVEDOx05

/* Role in Service ---------ommmm e - */

#define I NI TI ATOROX00

#defi ne RESPONDEROx10

#defi ne BOTH_ROLESOx20

#defi ne SERVI CE_NOT_ACTI VATEDOx30

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of Service (ass in Send Requests and Indications +

+ +

R i i */

#defi ne LOWV 0
#define H GH 1

May 20, 1996 © 1995 PEP Modular Computers Page B-5



Appendix B Definition of Constants

Profibus Layer 2 User’s Manual

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of Transmt Mde in Send Update Requests and Reply +
+ Updat e Requests +

+ +

R i i */
#define SINGLE OxFO

#defi ne MULTI PLEOxF1

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ ALL is G obal Address and Confirm Mbde in Poll List

+ respectively Indication Mde in Responder SAP +

+ +

+ DATA is Confirm Mdde in Poll List and Indication Mde

+ i n Responder SAP +

+ +

R i i */
#define ALL OxFF

#defi ne GLOBAL_ADDROX7F

#define DATA  OxFO

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition of Poll List Entry Marker State (Service POLL_ENTRY) +
+ +

e I e */
#def i ne UNLOCKEDOx00

#define LOCKED 0x01

| * e o e o o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e m e eee o -
+ +

+ Definition FMA2 events +

+ +

e I e */
#def i ne FMA2_FAULT_ADDRESSOx01/* Duplicate address recogni zed*/

#defi ne FMA2_FAULT_TRANSCEI VEROXx02/* Transcei ver error occured*/

#define FMA2_FAULT _TTQOx03/* Tine out on BUS detected*/

#def i ne FMA2_FAULT_SYNOx04/* No receiver synchronization*/

#def i ne FMA2_FAULT_QUT_OF RI NGOx05/* Station out of ring*/

#def i ne FMA2_GAP_EVENT 0x06/* New station in ring*/

#endi f /*_PBL2CON_HEADER */

[ % - END OF FILE --------------mmmem oo oo - */

Page B-6 © 1995 PEP Modular Computers May 20, 1996



PROFIBUS Layer 2 User's Manual Appendix C Type Definitions

APPENDIX C. TYPE DEFINITIONS

The definitions of the data types arriving at the communications interface are contained in the include data
“pbL2t ype. h".

/*****************************************************************************

* *
* I nclude File pbL2type.h *
* *
* *

* The include file pbL2type.h contains all structures that the user needs *
* for programm ng LAYER2. *

* *

*

****************************************************************************/

/****************************************************************************

* Edition H story

01 11/03/92 First witten HAH
*

02 01/27/93 T_FDL_SERVI CE_DESCR ext ended for: HAH *
"profimn" edition #7 *
"phyPROFI " edition #10 *
*

E o I T

03 02/ 14/ 94 Added ident. define: HWE *
#defi ne _PBL2TYPE _HEADER and surroundi ng #i f ndef*
Modi fied structure definition T_FDL_SERVI CE_DESCR: *
previ ous: *
USIGN8 far ** descr_ptr;*
now. *
voi d* descr_ptr;*
*
Modi fied structure definition T_FDL_SAP_DESCR: *
previous: *
USI GN8 far *sap_bl ock _ptr;*
now. *

voi df ar * sap_bl ock_ptr;*
*

***************************************************************************/

May 20, 1996 © 1995 PEP Modular Computers Page C-1



Appendix C Type Definitions PROFIBUS Layer 2 User’s Manual

#i fndef _PBL2TYPE HEADER_ /* include if only once */
#defi ne _PBL2TYPE_HEADER _

e I e I +
+ Definition of Base Types +
i e */

#define far

#define VO D void

#def i ne BOOL char

#defi ne I NT8 char

#define I NT16 short

#def i ne USI GN8 unsi gned char
#def i ne USI GN16 unsi gned short
#def i ne USI GN32 unsi gned | ong

e I e I +
+ Definition of LAYER2 Types +
i e */

typedef struct T_FDL_ADDR

{
USI G\3 station;
USI GN\8 segnent ;

} T_FDL_ADDR,

typedef struct T_FDL_PDU

{

USIGN8 far * buffer_ptr;
USI G\3 | engt h;

} T_FDL_PDUY;

typedef struct T_FDL_SERVI CE DESCR

{

USI GN\8 sap;

US| GN\8 servi ce;

USI G\3 primtive;

USI G\3 path_id;/* reserved for OS-9 PROFI BUS Manager */
USI GN16 user _id;

USI G\8 st at us;

voi d * descr_ptr;

struct T _FDL_SERVI CE DESCR far * next_descr;

struct T_FDL_SERVI CE DESCR far * |ink_descr;
/* reserved for OS-9 PROFI BUS Manager */

USI GN32 resrv;/* reserved for OS-9 PROFIBUS Manager */
/* currently not used */

} T_FDL_SERVI CE_DESCR

Page C-2 © 1995 PEP Modular Computers May 20, 1996



PROFIBUS Layer 2 User’s Manual

Appendix C Type Definitions

typedef struct T_BUSPAR BLOCK

{

T _FDL_ADDR
USI GN\8

USI GN\8

USI G\16

USI G\16

USI G\16

USI GN\8

USI GN\8

USI G\32

USI GN\8
BOOL

USI GN\8

USI GN\8

USI GN8 far *
USI GN\8

| oc_add;
baud_rate;

medi um r ed;

tsl;

m n_tsdr;

max_t sdr;

tqui;

tset;

ttr;

g,

i n_ring_desired;
hsa;

max_retry limt;
i dent;

i nd_buf _|en;

} T_BUSPAR BLOCK;

typedef struct T_FDL_SAP_BLOCK

{
USl G\8

USI G\8
USI G\8
USI G\8
USI G\8
USI G\8
USI G\8
USI G\8
USI G\8
USI G\8
USI G\8
USI G\8

max_| en_sda_req_| ow,
max_| en_sda_req_hi gh;
max_| en_sda_i nd_| ow,
max_| en_sda_i nd_hi gh;
max_| en_sdn_req_| ow,
max_| en_sdn_req_hi gh;
max_| en_sdn_i nd_I ow,
max_| en_sdn_i nd_hi gh;
max_| en_srd_req_| ow,
max_| en_srd_req_hi gh;
max_| en_srd_con_| ow,
max_| en_srd_con_hi gh;

} T_FDL_SAP_BLOCK;

May 20, 1996

© 1995 PEP Modular Computers

Page C-3



Appendix C Type Definitions PROFIBUS Layer 2 User’s Manual

typedef struct T_FDL_SAP_DESCR

{

USI GN\8 sap_nr;

T _FDL_ADDR rem add;

USI G\3 sda;

USI G\3 sdn;

USI G\3 srd;

USI G\3 csrd;

USI G\3 servi ces;

voi d far * sap_block _ptr;

T FDL_SERVI CE DESCR far * resrc_tail;
T FDL_SERVI CE _DESCR far * resrc_hdr;
USI GN\8 resrc_ctr;

USI GN\8 sem,;

} T_FDL_SAP_DESCR,

typedef struct T_FDL_RSAP_BLOCK

{

USI GN\8 i ndi cati on_node;

USI GN\8 max_| en_upd_req_| ow,
USI GN\8 max_| en_upd_req_hi gh;
USI GN\8 max_| en_srd_ind_| ow,
USI GN\8 max_| en_srd_i nd_hi gh;
USI GN\8 max_| en_sdn_i nd_I ow,
USI GN\8 max_| en_sdn_i nd_hi gh;
T _FDL_PDU upd_buf _I ow;

T _FDL_PDU upd_buf _hi gh;

T _FDL_PDU tel egram | ow,

T _FDL_PDU t el egram hi gh;

USI GN\8 transmt_| ow,

USI G\3 transmt _hi gh;

USI GN\8 mar ker _| ow;

USI G\3 mar ker _hi gh;

USI GN\8 fcs_ | ow

USI G\3 fcs_hi gh;

} T_FDL_RSAP_BLOCK;

typedef struct T_FDL_DEACT_SAP

{

USI GN\8 ssap;
T_FDL_SAP_DESCR far *sap_descr_ptr;
} T_FDL_DEACT_SAP;

Page C-4 © 1995 PEP Modular Computers

May 20, 1996



PROFIBUS Layer 2 User’s Manual

Appendix C Type Definitions

typedef struct T_FDL_SR BLOCK

{
T_FDL_ADDR
US| GNS
T_FDL_ADDR
US| GNS

US| GNS
T_FDL_PDU
T_FDL_PDU
T_FDL_PDU

| oc_add;

renot e_sap;
rem add;
serv_cl ass;
updat e_st at us;
send_dat a
recei ve_dat a;
resour ce;

} T_FDL_SR BLOCK;

typedef struct T_FDL_UPDATE_BLOCK

{
USl G\8

T_FDL_ADDR
US| GNS

US| GNS
T_FDL_PDU

dsap;

rem add;
serv_cl ass;
transmt;
upd_dat a;

} T_FDL_UPDATE_BLOCK;

typedef struct T_POLL_LIST_ELEMENT

{
USl G\8

T_FDL_ADDR
USI GNS

US| GNS

US| GNS
T_FDL_PDU
T_FDL_PDU

dsap;

rem add;

max_| en_csrd_req_| ow,
max_| en_csrd_con_| ow,
max_| en_csrd_con_hi gh;
pol | _buffer;

send_dat a;

T FDL_SERVI CE_DESCR far *resrc_hdr;
T FDL_SERVI CE DESCR far *resrc_tail;

USI GN\8 resrc_ctr;

T _FDL_SERVI CE _DESCR far *next_for_rcv;
USI G\3 transmt;

USI GN\8 t o_send;

USI G\3 mar ker ;

T _FDL_PDU pol | _tel egram

T _FDL_PDU dat a_t el egram

USI GN\8 data_fcs;

USI GN\3 pol | _fcs;

} T_POLL_LI ST_ELENENT;

typedef T_POLL_LIST_ELEMENT far * T_POLL_LI ST_ELEM PTR:

May 20, 1996

© 1995 PEP Modular Computers

Page C-5



Appendix C Type Definitions PROFIBUS Layer 2 User’s Manual

typedef struct T_POLL_LI ST_DESCR

{
USI GN\3 | en;
USI GN\8 confirm node;

T POLL_LIST_ELEM PTR far *elemptr;
} T_POLL_LI ST_DESCR;

typedef struct T_POLL_ENTRY

{

USI G\3 dsap;

T _FDL_ADDR rem add;
USI G\3 mar ker ;

} T_POLL_ENTRY;

2
typedef struct T_FDL_RESRC DESCR

{

USI G\3 dsap;

T _FDL_ADDR rem add;

USI GN\8 nr_of resources;

T_FDL_SERVI CE_DESCR far *resrc_ptr;
} T_FDL_RESRC DESCR;

2
typedef struct T_FDL_STATI STI C CTR

{

USI GN32 franme_send_count;

USI GN16 retry_count;

USI GN32 sd_count;

USI GN16 sd_error_count;

} T_FDL_STATI STIC CTR;

#endi f /*_PBL2TYPE_HEADER */

[ % e END OF FILE =--cncmcammcamamanmns

Page C-6 © 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

D. DEMO EXAMPLES

/* denb_M <dst_station> <sap>

* for exanple: deno_M2 2

| o o e e e e e e e e e et e e m e e e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e a - m |
*! ]
*1 Revi sion History: !
*1 # Reason By Dat e !
* | f e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e a = e e e e e - - |
*1 1 Oiginal HAH  11/20/92 !
*1 Li brary functions from pbL2hlf are used. !
*1 The function 'send_SRD ()" is used to send

*1 and reply data froma renote station. !
*1 This application works in conjunction with !
*1 the program'deno_S which nust run on the

*1 renote station. !
*1 For the VM30 we allocate nenory for the !
*1 out put buffer in the TPRAM (col ored nenory), !
*1 so the value for the "D MemAcc" paraneter

*1 could be set to zero in the device descriptor

*1 for the PROFIBUS device /profi_<x>. !
* | |
M e e TR T !
*/

#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <mem pep. h>
#i ncl ude <setsys. h>
#i ncl ude <signal . h>
#i ncl ude <time. h>

#i ncl ude <pbL2con. h>
#i ncl ude <pbL2type. h>
#i ncl ude <pbL2hl f. h>

/* LOCAL DEFI NES */

#def i ne NUM_ARG 3 /* Nunber of task arguments */
#define NOT_DONE O

#defi ne DONE -1

#def i ne TERM NATE got o TERMLBL

#defi ne SEND BUF_LEN 255

#defi ne ERROR -1

May 20, 1996 © 1995 PEP Modular Computers Page D-1



Appendix D Demo Examples Profibus Layer 2 User's Manual

/* FUNCTI ON_DECLARATI ONS */

extern USI GN32 open_PROFI ();
extern USI GN32 cl ose_PROFI ();
extern USI GN32 open_JOB ();
extern USI GN32 cl ose_JOB ();
extern USI GN32 send_SRD ();

voi d signal _handler ();
JOB_DESCR Job_Descr [1];

USI GN\8 Dst _Station;
US| G\8 Dst _SAP;
US| G\8 Sr c_SAP;

USI G\8 Fl ag_Si gnal ;
USI GN32  Signal;

/* FUNCTI ONAL_DESCRI PTI ON */

/* __________________________________________________________________________ */
/* Function mai n (argc, argv) */
/* */
/* __________________________________________________________________________ */

#i f def _UCC

mai n(int argc, char **argv )

#el se

mai n( argc, argv ) int argc; char **argv;
#endi f

{
JOB_DESCR *j ob_descr;

USI GN32 i ;

USI GN32 i nput ;

USI G\8 i nchar;
USIGN8 * wite buf;
USIGN8 wite |en;

USI GN8 * read_buf;
USI GN8 read_I en;

USI GN8 * tine_buf;
time_t time_thl;

USIGN8 flag_open_profi, flag_open_job;
US| GN\8 job_id,;

USI GN32 st at us;

USI GN32 mem t ype;

Page D-2 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

if (argc !'= NUM ARG

exit (E_PARAM;

/* ______________________________________________________________________ */
/* - Get DESTI NATI ON station and SAP - */
/* ______________________________________________________________________ */

/* get destination station */
sscanf (argv[1]," %", & nput);
Dst _Station = (USIGN8) (input);

/* get SAP for source and destination station */
sscanf (argv[2]," %", & nput) ;

Src_SAP = (USI GN8) (input);

Dst _SAP = Src_SAP;

Fl ag_Si gnal = FALSE;

/* __________________________________________________________________________ */
/* Install signal handler */

/* __________________________________________________________________________ */

/* __________________________________________________________________________ */
/* Allocate menory for output buffer */
/* __________________________________________________________________________ */

if (_getsys(D MPUType, si zeof (D_MPUType)) == 68030)
mem type = TPRAM

el se

memtype = O;

if ((wite_buf = (USIGN8 * ) srgcnem
(SEND_BUF_LEN * sijzeof (USIGN8), nmemtype)) == (USIG\8 *) ERROR)

{

status = ERROR;

TERM NATE;

}

/* __________________________________________________________________________ */
/* Open PROFI BUS devi ce */

/* I|F error */

/* CGot o TERM NATE */

/* ENDI F */

/* __________________________________________________________________________ */

if ((status = open_PROFI ()) == ERROR
TERM NATE;
flag_open_profi = DONE;

May 20, 1996 © 1995 PEP Modular Computers Page D-3



Appendix D Demo Examples

Profibus Layer 2 User’s Manual

% e e e e e e e e e e e e e

/* prepare entries in Job Descriptor
/*

/* job_id:

/* source SAP

/* destination SAP

/* nunber of IND buffer:

job_descr.job
j ob_descr. ssap
j ob_descr. dsap
j ob_descr. nr_i ndbuf

% e e e e e e e e e e

job_descr = &Job_Descr[0];

job_descr->job_id
j ob_descr - >ssap
j ob_descr ->nr _i ndbuf

0;
Src_SAP
0;

if ((status =
TERM NATE;
flag_open_job =

open_JOB S (job_descr)) !'= NULL)

DONE

/* MAIN | oop begins here

% e e e e e e e e e e e e

whi | e ( TRUE)

{

if (Flag_Signal)

{
errno = Signal
status = ERROR;
TERM NATE;

sleep (1);

wite len = 26;
tinme (& ime_thbl);
tinme_buf = (USIGN8 *) ctine(&inme_thl);

mencpy ((wite_buf + FDL_OFFSET), tine_buf,

/* prepare entries in Job Descriptor

/* renpote station address:
/* send buffer:
/* send | ength:
/* send cl ass:

j ob_descr.
j ob_descr.
j ob_descr.

send_buf
send_| en
send_cl ass

__________________________ *

*/

__________________________ *

__________________________ *

__________________________ *

__________________________ *

__________________________ *

wite_len);

__________________________ *

*/

job_descr.renote_station */

__________________________ *

Page D-4

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

job_id = 0;
job_descr = &Job_Descr[job_id];

j ob_descr->renpte_station = Dst_Station;
j ob_descr - >dsap = Dst _SAP;
j ob_descr - >send_buf = write_buf;
j ob_descr->send_I en = wite_len;
j ob_descr->send_cl ass = H GH,
printf ("Send SRD to Job %: ",job_id);
status = send_SRD (job_id);
if (status == ERROR) printf ("SYSTEM ERROR\ n");
el se
{
swi tch ((USI G\8) st at us)
{
case NULL: printf ("DONE\Nn");
br eak;
case RR printf ("RETRY\n");
br eak;
case DH:
case DL: printf ("SRD DONE, Recei ve DATA avail able\n");
printf (" ");
job_descr = &Job_Descr[job_id];
read_buf = job_descr->rec_buf;
read_len = job_descr->rec_len;
for (i =0; i <read_len; i++)
put char (read_buf[i]);
br eak;
case RDH:
case RDL: printf ("SRD ERROR, Receive DATA avail able\n");
printf (" ");
job_descr = &Job_Descr[job_id];
read_buf = job_descr->rec_buf;
read_len = job_descr->rec_len;
for (i =0; i <read_len; i++)
put char (read_buf[i]);
br eak;
case NR printf ("SRD DONE, NO Recei ve DATA avail able\n");
br eak;
default: printf ("ERROR status = %\ n", status);
}
}
} /* end: while (TRUE) */

May 20, 1996 © 1995 PEP Modular Computers Page D-5



Appendix D Demo Examples

Profibus Layer 2 User’s Manual

TERMLBL:

if (flag_open_job ==

if (flag_open_profi

== (USI G\N8) DONE) cl ose_PROFI ();

if (status != ERROR
errno = (status | 0x8000);

exit (errno);

}

(USI GN8) DONE) close JOB (job_id);

/* __________________________________________________________________________ */

/* Funct i onbody
/*

si gnal _handl er (signal)

*/
*/

/* __________________________________________________________________________ */

#i fdef _UCC

voi d si gnal _handl er

#el se

voi d si gnal _handl er

#endi f

{

Fl ag_Si gnal = TRUE

Si gnal = signal
return;

}

(int signal)

(signal) int signal

Page D-6

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

/* denp_S <dst_station> <sap>

* for exanple: deno_S 2 2

| o o e e e e e e e e e et e e m e e e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e a - m |
*1 !
*1 Revi sion History: !
*1 # Reason By Dat e !
* | f e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e a = e e e e e - - |
*1 1 Oiginal HAH 20/ DEC/ 92 !
*1 Li brary functions from pbL2hlf are used. !
*1 the function 'send_RPLUPD S()' is used !
*1 to send data to a renpte station. !
*1 This application works in conjunction with !
*1 the program'denmo_M which nust run on the !
*1 renote station. !
*1 For the VM30 we allocate nenory for the !
*1 out put buffer in the TPRAM (col ored nenory), !
*1 so the value for the "D MemAcc" paraneter !
*1 could be set to zero in the device descriptor !
*1 for the PROFIBUS device /profi_<x>. !
* | |
*1 2 Toggle wite buffer for function HAH 09/ JUN 93 !
*1 "send_RPLUPD_S (). !
* | |
M e e TR T !
*/

#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <mem pep. h>
#i ncl ude <setsys. h>
#i ncl ude <signal . h>
#i ncl ude <tinme. h>

#i ncl ude <pbL2con. h>

#i ncl ude <pbL2type. h>
#i ncl ude <pbL2hl f. h>

/* LOCAL DEFI NES */

#def i ne NUM_ARG 3 /* Nunber of task arguments */
#define NOT_DONE O

#defi ne DONE -1

#def i ne TERM NATE got o TERMLBL

#defi ne SEND BUF_LEN 255

#defi ne NR_OF_RESRC 0x2

#defi ne ERROR -1

May 20, 1996 © 1995 PEP Modular Computers Page D-7



Appendix D Demo Examples Profibus Layer 2 User's Manual

/* FUNCTI ON_DECLARATI ONS */

extern USI GN32 open_PROFI ();
extern USI GN32 cl ose_PROFI ();
extern USI GN32 open_JOB ();
extern USI GN32 cl ose_JOB ();
extern USI GN32 send_RPLUPD S ();
extern USI GN32 receive IND ();
extern USI GN32 ready_IND ();
extern USI GN32 rel ease IND ();

voi d signal _handl er (signal _code);

JOB_DESCR Job_Descr [1];

USIGN8 Dst_Station;
US| G\8 Dst _SAP;
US| G\8 Sr c_SAP;

USI GN8 Fl ag_Si gnal ;
USI GN32  Signal;

/* FUNCTI ONAL_DESCRI PTI ON */

/* __________________________________________________________________________ */
/* Function mai n (argc, argv) */
/* */
/* __________________________________________________________________________ */

#i f def _UCC

mai n(int argc, char **argv )

#el se

mai n( argc, argv ) int argc; char **argv;
#endi f

{
JOB_DESCR *j ob_descr;

USI GN32 i ;

USI GN32 i nput ;

USI G\8 i nchar;
USIGN8 * wite buf;
USIGN8 wite |en;
BOOL wite_toggle;

USI GN8 * read_buf;
USI GN8 read_I en;

USI GN8 * tine_buf;
time_t time_thl;

Page D-8 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User's Manual

Appendix D Demo Examples

USIGN8 flag_open_profi, flag_open_job;
US| GN\3 job_id,;

USI GN32 st at us;

USI GN\8 i nd_service, ind_status;

USI GN32 mem t ype;

if (argc !'= NUM ARG

exit (E_PARAM ;
/* ______________________________________________________________________ */
[* - Get DESTINATION station and SAP - x/
/* ______________________________________________________________________ */
/* get destination station */
sscanf (argv[1]," %", & nput);
Dst _Station = (USI GN8) (input);
/* get SAP for source and destination station */
sscanf (argv[2]," %", & nput);
Src_SAP = (USI GN8) (input);
Dst _SAP = Src_SAP;
Fl ag_Si gnal = FALSE;
/* __________________________________________________________________________ */
/* Install signal handler */
/* __________________________________________________________________________ */
i ntercept(signal _handler);
/* __________________________________________________________________________ */
/* Allocate menory for output buffer */
/* __________________________________________________________________________ */
if (_getsys(D MPUType, si zeof (D_MPUType)) == 68030)
mem type = TPRAM
el se
memtype = O;
if ((wite_buf = (USIGN8 * ) srgcnem
(SEND_BUF_LEN * 2 * sizeof (USIGNB), memtype)) == (USIGN8 *) ERROR)
{
status = ERROR
TERM NATE;
}
May 20, 1996 © 1995 PEP Modular Computers Page D-9



Appendix D Demo Examples

Profibus Layer 2 User’s Manual

/* __________________________________________________________________________ */

/* Open PROFI BUS devi ce
/* IF error

/* Got o TERM NATE

/* ENDI F

/* __________________________________________________________________________ */

if ((status = open_PROFI ())
TERM NATE;
flag_open_profi = DONE;

== ERROR)

/* __________________________________________________________________________ */
/* prepare entries in Job Descriptor:

/*

/* job_id:

/* source SAP:

/* destination SAP:

/* nunmber of |ND buffer:

job_descr.job
j ob_descr. ssap
j ob_descr. dsap
j ob_descr. nr_i ndbuf

*/

/* __________________________________________________________________________ */

job_descr = &Job_Descr[0];
job_descr->job_id

j ob_descr - >ssap

j ob_descr ->nr _i ndbuf

if ((status = open_JOB R SRD
TERM NATE;

fl ag_open_j ob = DONE;

wite toggle = 0;

/* MAIN | oop begins here

0;
Src_SAP;
NR_OF_RESRC,

(j ob_descr)) != NULL)

/* __________________________________________________________________________ */

whi | e ( TRUE)
{

if (Flag_Signal)

{
errno = Signal;
status = ERROR;
TERM NATE;

Page D-10

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

/* __________________________________________________________________________ */
/* Prepare buffer for output */
/* __________________________________________________________________________ */

tinme (& inme_thbl);
time_buf = (USIGN8 *) ctine(&inme_thl);
wite len = 26;

mencpy ((wite_buf + wite_toggle * SEND BUF_LEN + FDL_OFFSET),
time_buf, wite_len);

/* __________________________________________________________________________ */
/* prepare entries in Job Descriptor: */

[ * */
/* renote station address: job_descr.renote_station */

/* send buffer: j ob_descr. send_buf */

/* send | ength: j ob_descr.send_| en */

/* send cl ass: job_descr. send_cl ass */

/* __________________________________________________________________________ */
job_id = 0;

job_descr = &Job_Descr[job_id];

j ob_descr->renpte_station Dst _Stati on;

j ob_descr - >dsap Dst _SAP;

j ob_descr - >send_buf = wite_ buf + wite_toggle * SEND BUF_LEN,
j ob_descr->send_I en = wite_len;

j ob_descr->send_cl ass = H GH;

printf ("Send REPLY_UPDATE to Job %l: \n",job_id);

do

{

status = send_RPLUPD S (job_id);
if (status == ERROR) TERM NATE;
} whil e (status);

wite_ toggle = (wite_toggle + 1) & 0x01;

/* __________________________________________________________________________ */
/* wait for SRD Indication */

/* __________________________________________________________________________ */

status = receive_|I NIX);
if (status == ERROR) TERM NATE;

i nd_status
i nd_service

j ob_descr - >st at us;
j ob_descr - >servi ce;

el se

{
job_id = (USI GNB) status;
j ob_descr = &Job_Descr[job_id];
read_buf = job_descr->i nd_buf;
read_| en = job_descr->ind_I en;

May 20, 1996 © 1995 PEP Modular Computers Page D-11



Appendix D Demo Examples Profibus Layer 2 User's Manual

printf ("Received SRD fromJob %, Update status = %\n",
job_id,ind_status);
if ((ind_status == LO || (ind_status == H))
{
printf ("SRD Data: ",ind_status);
for (i =0; i <read_len; i++)
put char (read_buf[i]);

}

rel ease IND (job_id);
}
} /* end: while (TRUE) */
TERMLBL:

if (flag_open_job == (USIGN8) DONE) close JOB (job_id);
if (flag_open_profi == (USIGN8) DONE) close PROFI();

if (status != ERROR
errno = (status | 0x8000);

exit (errno);

}

/* __________________________________________________________________________ */
/* Functi onbody signal _handl er (signal) */
/* */
/* __________________________________________________________________________ */

#i f def _UCC

voi d signal _handler (int signal)

#el se

voi d signal _handler (signal) int signal
#endi f

{

Fl ag_Si gnal = TRUE
Si gnal = signal
return;

}

Page D-12 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User's Manual

Appendix D Demo Examples

/* sda_denp <PROFI BUS devi ce_name> <own_st ati on> <dst_stati on> <sap>

for exanple:

sda_deno /profi_1 1 2 3

!

!

! # Reason By Dat e !
! I e LT T !
! 1 Oiginal HAH  10/15/92 !
! NET- descriptor is used as a data nmodule to !
! extract information about PROFIBUS device !
! and bus paraneter !
! 2 Changed due to new structure of NET- HAH  12/03/92

! descriptor, NET-descriptor no | onger

! used. Bus paraneters defined directly

! in function "set_busparaneter"”.

! For the VM30 we allocate nenory for the

! out put buffer in the TPRAM (col ored nenory), !
! so the value for the "D MemAcc" paraneter !
! could be set to zero in the device descriptor !
! for the PROFIBUS device /profi_<x>. !
! !
R R E R R !
*/

@sysedit: equ 2

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

#i ncl ude <mem pep. h>

#i ncl ude <setsys. h>

#i ncl ude <signal . h>

#i ncl ude <tine. h>

#i ncl ude <pbL2con. h>

#i ncl ude <pbL2type. h>

/* LOCAL DEFI NES */

#def i ne NUM_ARG 0x05 /* Nunber of task arguments */
#define NOT_DONE O

#defi ne DONE -1

#defi ne NO_WAI T_CON 0x00

#defi ne WAI T_CON Oxf f

#def i ne TERM NATE got o TERMLBL

#define  USR BUF_LEN 242

#defi ne | ND_BUF_LEN 255

#defi ne SEND_BUF_LEN 255

#defi ne NR_OF_RESRC 0x2

#defi ne ERROR -1

May 20, 1996

© 1995 PEP Modular Computers



Appendix D Demo Examples

Profibus Layer 2 User’s Manual

#defi ne STDI N 0
#def i ne STDOUT 1

/* FUNCTI ON_DECLARATI ONS */

extern T_FDL_SERVI CE_DESCR * fdl _con_ind ();
extern T_FDL_SERVI CE_DESCR * fdl _con_ind_pol |
extern USIGN32 fdl _req ();
extern USIGN32 fdl _open ();
extern USIGN32 fdl _close ();
voi d signal _handl er (signal _code);
US| GN32
US| GN32
US| GN32
US| GN32
US| GN32
US| GN32
US| GN32
US| GN32
US| GN32
US| GN32

set _busparaneter ();
activate_sap ();
deactivate_sap ();

put _resrc_to_sap ();

wi thdraw resrc_fromsap ();
do_sda_ind (sdb_ptr);

al l oc_service_nem ();

all oc_mem for_service_descr ();
all oc_mem for_buspar ();
alloc_mem for_sap ();

USI GN32 all oc_mem for_receive_data ();
USI GN32 al l oc_nmem for_sda req ();

VO D *nmenory_al l ocation (length);

VO D nenory_deal | ocation (ptr);

VO D bl ock_copy (source, desc, |ength);
USIGN32 WiteQutput (wr_buf, w_len);
USI GN32 Readl nput (rd_buf, rd_len);

[ * LOCAL_DATA */

char *dev_nane;

[* init control flags
BOOL flag_fdl _open;
BOOL flag_put_resrc;
BOOL flag_activate_sap;

/*
/*
/*

/* flow control flags
BOOL flag_signal;

BOOL flag wait_resrccon;
BOOL flag_wait_sdacon;
int flag;

/*

()

*/
open PROFI BUS devi ce done */
servi ce PUT_RESRC TO FDL done*/
servi ce FMA2_ACTI VATE_SAP done*/

*/

signal received */

Page D-14

© 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

T_FDL_SERVI CE_DESCR * sdb_ptr;

T_FDL_SERVI CE_DESCR * usr_sdb_ptr;
T_FDL_SERVI CE_DESCR * sda_sdb_ptr;
T_FDL_SERVI CE_DESCR * resrc_sdb_ptr;
T_FDL_SERVI CE_DESCR * rec_resrc_ptr,;
T_FDL_SERVI CE_DESCR * resrc_parklist[ NR OF RESR(C];
T_FDL_SERVI CE_DESCR * withdr_resrc_sdb ptr;
T_FDL_RESRC DESCR * withdr_resrc_descr_ptr;
T_FDL_RESRC DESCR * resrc_descr_ptr;

T _FDL_SAP_DESCR * sap_descr_ptr;

T _FDL_SAP_BLOCK * sap_bl ock_ptr;

T _FDL_SR BLOCK * send_sr _bl ock;

T _FDL_SR BLOCK * rec_sr_bl ock;
T_BUSPAR_BLOCK * buspar_ptr;

struct RD_BUF_BLOCK
{
USI G\8 | en;
T_FDL_SERVI CE_DESCR *buffer_ptr;
struct RD BUF BLOCK * next _ptr;
3
typedef struct RD BUF_BLOCK RD BUF_BLQOCK;
RD BUF_ BLOCK *rd_backup_ptr, *free_backup_ptr, *full_backup_ptr;

USI GN8 buffer [128];

USI GN8 * read_buf;
USI GN8 read_I en;

USI GN8 * send_buf;
USIGN8 * write_buf;
USIGN8 wite |en;

USI GN8 * tine_buf;
time_t time_thl;

USI GN8 resrc_cnt;
int signal;

int input;

char inchar;

USI GN8 own_station;
USI GN8 dst_station;

USI GN\8 own_sap;
USI G\3 dst _sap;

May 20, 1996 © 1995 PEP Modular Computers Page D-15



Appendix D Demo Examples

Profibus Layer 2 User’s Manual

/* FUNCTI ONAL_DESCRI PTI ON */

% e e e e e e e e e e e

/* Function mai n (argc, argv)
/*

% e e e e e e e e e e e

mai n( argc, argv )
int argc;
char **argv;

{

int i;

if (argc !'= NUM ARG
exit (E_PARAM ;

/* get source station */

sscanf (argv[2]," %", & nput);
own_station = (USIG\N8) (input);
/* get destination station */
sscanf (argv[3]," %", & nput);
dst _station = (USIG\N8) (input);

/* get SAP for source and destination station */

sscanf (argv[4]," %", & nput) ;
own_sap = (USIGN8) (input);

dst _sap own_sap;
dev_nanme = argv[1];
| ® o o e e e e e e e e e e e e e e meee oo
/* Predefine several flags
| ® o o e e e e e e e e e e e e e e meee oo
flag_fdl _open = NOT_DONE;
flag_put_resrc = NOT_DONE;
flag_activate_sap = NOT_DONE;
fl ag_si gnal = FALSE;
flag_wait_resrccon = FALSE;
fl ag_wait _sdacon = FALSE;

_____________________________ *

*/
*/

_____________________________ *

Page D-16 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User's Manual

Appendix D Demo Examples

/* Install signal handler

i ntercept(signal _handler);

| ® o o e o e e e e e e e e e e e e e e e mm e meee s
/* Open PROFI BUS devi ce

/* IF error

/* Got o TERM NATE

/* ENDI F

| ® o o e o e e e e e e e e e e e e e e e mm e meee s

if (fdl_open (dev_nane)
TERM NATE;

_1)

flag _fdl _open = DONE;

if (alloc_service nmem () == ERROR)

TERM NATE;

if (set_busparaneter () == ERROR

TERM NATE;

if (activate_sap () == ERROR)

TERM NATE;

flag_activate_sap = DONE;

resrc_cnt = NR_OF_RESRC,

if (put_resrc_to_sap (WAIT_CON) == ERROR)

TERM NATE;
flag_put_resrc = DONE;

wite buf = &buffer[O0];

/* MAIN | oop begins here

% e e e e e e e e e e e e e

whi | e ( TRUE)
{
sleep (1);

time (& ime_tbl);
time_buf = (USIGN8 *) ctime(&ime_tbl);
wite len = 26;

bl ock_copy (time_buf,

wite buf, wite_len);

_______________________ *

*/
_______________________ *
_______________________ *

*/

*/

*/

*/
_______________________ *
_______________________ *

*/
_______________________ *

May 20, 1996 © 1995 PEP Modular Computers

Page D-17



Appendix D Demo Examples Profibus Layer 2 User's Manual

if (flag_signal)
{
if (signal == SIG NI)
{
printf ("\nlNPUT NEWLINE ");
wite len = 0;
i nchar = 0;
while (inchar !'= EQL)
{
i nchar = getchar ();
buffer[wite_|l en++] = inchar;
}
flag_signal = FALSE;
}
el se
TERM NATE;

}

flag = Readl nput (read_buf, & ead_|en);
if (flag > NULL)

{

printf ("Read |nput: ");

for (i =0; i <read_len; i++)

put char (read_buf[i]);

}
if (flag == ERROR) printf ("Read Input: ERROR\ n") ;
flag = WiteQutput (wite_buf,wite_len);
if (flag == ERROR) printf ("Wite Qutput: ERROR\ n") ;
if (flag == NULL) printf ("Wite Qutput: RETRY\ n") ;
if (flag > NULL) printf ("Wite Qutput: DONE\ n") ;
} /* end: while (TRUE) */
TERMLBL:
[* if (flag_put_resrc == DONE) withdraw resrc_fromsap (); */

if (flag_activate_sap == DONE) deactivate_sap ();
if (flag_fdl _open == DONE) fdl _close();

return (errno);

}

voi d signal _handl er (signal _code)
i nt signal _code;

Page D-18 © 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

/* __________________________________________________________________________ */
/* Functi onbody signal _handl er (signal) */
/* */
/* __________________________________________________________________________ */
{

flag_signal = TRUE;

signal = signal _code;

return;

}

/****************************************************************************

*

FMA2/ FDL Servi ce Functi ons:

set _busparaneter ()
activate_sap ()
deactivate_sap ()
do_sda_ind ()

put _resrc_to_sap ()

wi thdraw resrc_fromsap ()

WiteCQutput ()
Readl nput ()

E o S R A R T R R

*
*
*
*
*
*
*
*
*
*
*
*
* *
*

***************************************************************************/

USI GN32 set _busparameter ()

FUNCTI ONAL_DESCRI PTI ON
This function fills the busparameter block with desired values and puts it
to | ayer2.

USI GN32 ret_val = NULL;

[* The follow ng paraneters are dependent on the sel ected baud rate */
/* NNANNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN */

buspar _ptr->l oc_add. station = own_stati on;
buspar _ptr->l oc_add. segnent = NO _SEGVENT;
buspar _ptr->baud_rate = K BAUD 187_5;

May 20, 1996 © 1995 PEP Modular Computers Page D-19



Appendix D Demo Examples

Profibus Layer 2 User’s Manual

switch ( (USI GN8) buspar_ptr->baud_rate )

{
case K _BAUD 500
buspar _ptr->tsl = 4000;
buspar _ptr->m n_t sdr = 100;
buspar _ptr->max_t sdr = 2000;
buspar _ptr->t qui = 0;
buspar _ptr->tset = 50;
buspar_ptr->ttr = 50000;
buspar_ptr->g = 2;
break ;
case K BAUD 187_5
buspar _ptr->tsl = 2000;
buspar _ptr->m n_t sdr = 40;
buspar _ptr->max_t sdr = 1000;
buspar _ptr->t qui = 0;
buspar _ptr->tset = 20;
buspar_ptr->ttr = 25000;
buspar_ptr->g = 2;
break ;
case K BAUD 93 75 :
buspar _ptr->tsl = 1000;
buspar _ptr->m n_t sdr = 25;
buspar _ptr->max_t sdr = 500;
buspar _ptr->t qui = 0;
buspar _ptr->tset = 40;
buspar_ptr->ttr = 13000;
buspar _ptr->g = 2;
break ;
case K BAUD 19 2 :
buspar _ptr->tsl = 400;
buspar _ptr->m n_t sdr = 10;
buspar _ptr->max_t sdr = 200;
buspar _ptr->t qui = 0;
buspar _ptr->tset = 4,
buspar_ptr->ttr = 9000;
buspar _ptr->g = 2;
break ;
case K BAUD 9 6 :
def aul t :
buspar _ptr->tsl = 400;
buspar _ptr->m n_t sdr = 20;
buspar _ptr->max_t sdr = 100;
buspar _ptr->t qui = 0;
buspar _ptr->tset = 2;
buspar_ptr->ttr = 5000;
buspar _ptr->g = 2;
break ;
Page D-20 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

}

buspar _ptr->hsa

buspar _ptr->medi umred
buspar _ptr->in_ring_desired
buspar _ptr->max_retry_limt

10;
NO_REDUNDANCY;
TRUE;

2;

buspar _ptr->i dent[ 0]
buspar _ptr->i dent[ 1]
buspar _ptr->i dent[ 2]
buspar _ptr->i dent[ 3]
buspar _ptr->i dent[ 4]
buspar _ptr->i dent[ 5]
buspar _ptr->i dent[ 6]
buspar _ptr->i dent[ 7]
buspar _ptr->i dent[ 8]
buspar _ptr->i dent[ 9]
buspar _ptr->i dent[ 10]
buspar _ptr->i dent[ 11]
buspar _ptr->i dent[ 12]
buspar _ptr->i dent[ 13]
buspar _ptr->i dent[ 14]
buspar _ptr->i dent[ 15]
buspar _ptr->i dent[ 16]
buspar _ptr->ident[ 17]
buspar _ptr->i dent[ 18]
buspar _ptr->i dent[ 19]
buspar _ptr->i nd_buf _|en

e el

. wc®T—TmQAQWTW”

ERrRIgMm0nCc

0;

usr_sdb_ptr->sap
usr_sdb_ptr->service
usr_sdb_ptr->primtive
usr_sdb_ptr->descr_ptr

MBAP_O;
FVMA2_SET_BUSPARAMETER,
REQ

(USI GN8 *) buspar _ptr;

if (fdl_req(usr_sdb_ptr) == ERROR)

sdb_ptr = fdl _con_ind ();
if ( ((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL) )
return (ERROR);

if ((sdb_ptr->status !'= OK) && (sdb_ptr !'= LR))
{

errno = E_PARAM

return (ERROR);

}

return (ret_val);

}

May 20, 1996 © 1995 PEP Modular Computers Page D-21



Appendix D Demo Examples Profibus Layer 2 User's Manual

USI GN32 activate_sap ()

| o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo
FUNCTI ONAL_DESCRI PTI ON

This function activates a sap for desired action. To activate a sap for
respondi ng a SRD or CSRD request you need the function activate_rsap().

USI GN32 ret_val = 0O;

(T_FDL_SAP_DESCR *) usr_sdb_ptr->descr_ptr = sap_descr_ptr;
usr_sdb_ptr->sap = MBAP_2;
usr_sdb_ptr->service = FMA2_ACTI VATE_SAP;
usr_sdb_ptr->primtive = REQ
sap_descr_ptr->sap_nr = own_sap;
sap_descr_ptr->rem add. stati on = dst_station;
sap_descr_ptr->rem add. segnent = NO_SEGVENT;

sap_bl ock_ptr->max_| en_sda_req_l ow = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_| en_sda_req_high = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_| en_sdn_req_l ow = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_| en_sdn_req_high = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_len_srd_req_l ow = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_| en_srd_req_high = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_| en_sda_ind_l ow = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_| en_sda_i nd_high = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_|l en_sdn_ind_l ow = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_| en_sdn_i nd_high = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_| en_srd_con_l ow = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);
sap_bl ock_ptr->max_| en_srd_con_high = IND BUF_LEN - (FDL_OFFSET + FDL_TRAI LER);

sap_descr_ptr->sda
sap_descr_ptr->sdn BOTH_RCLES;
sap_descr_ptr->srd SERVI CE_NOT_ACTI VATED,;
sap_descr_ptr->csrd = SERVI CE_NOT_ACTI VATED,;

BOTH_ROLES;

if (ret_val = fdl _req(usr_sdb_ptr) == ERROR)
return (ERROR);

sdb_ptr = fdl _con_ind ();
if ( ((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL) )
return (ERROR);

if (sdb_ptr->status = OK)
{

errno = E_PARAM

return (ERROR);

}

return(ret_val);

}

Page D-22 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

USI GN32 deactivate_sap ()

FUNCTI ONAL_DESCRI PTI ON
This function deactivates a sap for desired action.

T_FDL_DEACT_SAP sap_deact;
T_FDL_DEACT_SAP *sap_deact _ptr;
USI GN32 ret_val = 0O;

sap_deact _ptr = &sap_deact;

(T_FDL_DEACT_SAP *) usr_sdb_ptr->descr_ptr = sap_deact _ptr;
usr_sdb_ptr->sap = MBAP_2;
usr_sdb_ptr->service = FMA2_DEACTI VATE_SAP;
usr_sdb_ptr->primtive = REQ

sap_deact _ptr->ssap = own_sap;

if (ret_val = fdl _req(usr_sdb_ptr) == ERROR)
return (ERROR);

whi | e ( TRUE)

{

sdb_ptr = fdl _con_ind ();

if ( ((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL) )
return (ERROR);

if (sdb_ptr->service == FMA2_DEACTI VATE_SAP)
return(ret_val);

}
}

May 20, 1996 © 1995 PEP Modular Computers Page D-23



Appendix D Demo Examples Profibus Layer 2 User's Manual

USI GN32 WiteQutput (wr_buf,w _|en)
USI GN8 *wr _buf;
USI GN8 wr | en;

FUNCTI ONAL_DESCRI PTI ON

This function creates an SDA request by filling
the T_FDL_SERVI CE_DESCR bl ock
the T_FDL_SR BLOCK
the tel egram buffer with desired nessage.

_____________________________________________________________________________ * [
{
USI GN32  ret_val = NULL;
bl ock_copy (w _buf, &send_buf[FDL_OFFSET], w _len);
sda_sdb_ptr->service = SDA,
sda_sdb_ptr->primtive = REQ
sda_sdb_ptr->sap = own_sap;
sda_sdb_ptr->descr_ptr = (USI GN8 *)send_sr_bl ock;
send_sr _bl ock->rem add. station = dst_station;
send_sr_bl ock->renonte_sap = dst _sap;
send_sr_bl ock->rem add. segnent = NO_SEGVENT;
send_sr _bl ock->serv_cl ass = H CH;
send_sr_bl ock->send_dat a. | ength = w _len;
send_sr_bl ock->send_dat a. buffer_ptr = send_buf;
if ((ret_val = fdl _req(sda_sdb ptr)) == ERROR)
return (ret_val);
flag_wait_sdacon = TRUE;
while (flag_wait_sdacon)
{
sdb_ptr = fdl _con_ind ();
if ( ((USIGN32) sdb_ptr !'= NULL) && ((USIGN32) sdb_ptr I= -1) )
if ((sdb_ptr->primtive == CON) && (sdb_ptr->service == SDA))
{
flag_wait_sdacon = FALSE;
if (sdb_ptr->status == OK) return (w_len);
el se [* sdb_ptr->status !'= OK */
{
if (sdb_ptr->status == RR) return (NULL);
el se return (ERROR);
}
}
Page D-24 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

el se
do_sda_ind (sdb_ptr);
}

el se return (ERROR);

} /* end: while (flag_wait_sdacon) */

USI GN32 Readl nput ()

FUNCTI ONAL_DESCRI PTI ON
This function handl es an SDA or SDN indi cation by
filling the provided buffer with the incom ng nmessage

USI GN32 Readl nput (rd_buf, rd_len)
USI GN8 *rd_buf;
USIGN8 *rd_| en;

{

T_FDL_SERVI CE_DESCR * sdb_ptr;
USI GN8 * buf;

USI G\N8 | en;

USI G\32 ret _val = NULL;

if (full _backup_ptr->len == NULL)

{
sdb_ptr = fdl _con_ind_poll ();

if ( ((USIGN32) sdb_ptr !'= NULL) &&% ((USIGN32) sdb_ptr I=-1) )
do_sda_ind (sdb_ptr);

el se
return (NULL);

}

if (full_backup_ptr->len I'= NULL)

{

sdb_ptr = full _backup_ptr->buffer_ptr;

rec_sr_block = (T_FDL_SR BLOCK *) sdb_ptr->descr_ptr;
buf = rec_sr_bl ock->recei ve_data. buffer_ptr;

len = rec_sr_block->receive_data.length;

bl ock_copy (buf, rd_buf, len);
full _backup_ptr->len = NULL;
full _backup_ptr = full _backup_ptr->next_ptr;

resrc_parklist[resrc_cnt++] = sdb_ptr;

if (put_resrc_to_sap (NOWAIT_CON) == ERROR)
return (ERROR);

May 20, 1996 © 1995 PEP Modular Computers Page D-25



Appendix D Demo Examples Profibus Layer 2 User's Manual

flag_wait_resrccon = TRUE;
while (flag_wait_resrccon)

{
sdb_ptr = fdl _con_ind ();
if ( ((USIG\N32) sdb_ptr !'= NULL) &&% ((USIGN32) sdb_ptr I=-1) )
if (sdb_ptr->primtive == CON)
/* service = PUT_RESRC TO FDL */
{
if (sdb_ptr->status == OK)
flag wait_resrccon = FALSE;
} /* end: service = PUT_RESRC TO FDL */
el se [* primtive = IND */
do_sda_ind (sdb_ptr);
} [* end: if (sdb_ptr != NULL/-1) *
el se
ret ur n( ERROR) ;
} /* end: while (flag_wait_resrc_con) */
rd_len[0] = len;
return (len);
} [* end: (full _backup_ptr->len I'= NULL) */
}
| ® o e o e o e e o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eee o -

USI GN32 do_sda_ind ()

FUNCTI ONAL_DESCRI PTI ON
Thi s function handl es an SDA indi cation

USI GN32 do_sda_i nd (sdb_i nd)
T_FDL_SERVI CE_DESCR * sdb_i nd;

{

USI GN32 ret_val = NULL;

rec_sr_block = (T_FDL_SR BLOCK *) sdb_i nd->descr_ptr;
free_backup_ptr->len = rec_sr_bl ock->receive_data.length;
free_backup_ptr->buffer_ptr = sdb_ind;

free_backup_ptr = free_backup_ptr->next_ptr;

return (ret_val);

}

Page D-26 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

USI GN32 put _resrc_to_sap (wait_con)

FUNCTI ONAL_DESCRI PTI ON

This function puts receive resources out of a list of allocated menory to the
activated sap

USI GN32 put _resrc_to_sap (wait_con)

USI GN8 wait_con;

{
T_FDL_SERVI CE_DESCR * current_resrc_ptr;
USI G\8 i ;

USI GN32  ret_val = NULL;

usr_sdb_ptr->sap = own_sap;
usr_sdb_ptr->service = PUT_RESRC TO FDL;
usr_sdb_ptr->primtive = REQ

(T_FDL_RESRC DESCR *)usr_sdb_ptr->descr_ptr= resrc_descr_ptr;

resrc_descr_ptr->nr_of resources = resrc_cnt;

resrc_descr_ptr->dsap = dst_sap;
resrc_descr_ptr->rem add. station = dst_station;
resrc_descr_ptr->rem add. segnent = NO_SEGVENT;

resrc_descr_ptr->resrc_ptr = resrc_parklist[O0];
current _resrc_ptr = resrc_parklist[O0];

i = 1;

while (i < resrc_cnt)

{

current _resrc_ptr->next_descr = resrc_parklist[i++];
current _resrc_ptr = current_resrc_ptr->next_descr;

}

current _resrc_ptr->next_descr = NULL;
resrc_cnt = 0;

if ((ret_val = fdl _reqg(usr_sdb_ptr)) == ERROR)
return (ERROR);

if (wait_con == WAI T_CON)

{

sdb_ptr = fdl _con_ind ();

if ( ((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL) )
return (ERROR);

May 20, 1996 © 1995 PEP Modular Computers Page D-27



Appendix D Demo Examples Profibus Layer 2 User's Manual

if (sdb_ptr->status != CK)

{
errno = E_PARAM
return (ERROR);
}
}
return (ret_val);
}
| ® o e o e e o e e e e o e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e -

FUNCTI ONAL_DESCRI PTI ON
Wt hdraw resources from SAP

USI GN32 withdraw resrc_fromsap ()

{

USI GN32 ret_val = NULL;

wi thdr _resrc_sdb_ptr->sap = own_sap;
wi t hdr _resrc_sdb_ptr->service = W THDRAW RESRC FROM FDL;
withdr_resrc_sdb_ptr->primtive = REQ

(T_FDL_RESRC DESCR *)w t hdr_resrc_sdb_ptr->descr_ptr
wi t hdr _resrc_descr_ptr;

wi t hdr _resrc_descr_ptr->dsap =
dst _sap;

wi t hdr _resrc_descr_ptr->rem add. station
wi t hdr _resrc_descr_ptr->rem add. segnent

dst _station;
NO_SEGVENT;

if ((ret_val = fdl _req(withdr_resrc_sdb_ptr)) == ERROR)
return (ERROR);

sdb_ptr = fdl _con_ind ();
if ( ((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL) )
return (ERROR);

return (ret_val);

}

Page D-28 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

/****************************************************************************

*

Menory Managenent Functi ons:

*
*
*
* alloc_service_nmem ()

* alloc_mem for_service_descr ()
* alloc_mem for_buspar ()

* alloc_memfor_sap ()

* alloc_mem for_receive_data ()
* alloc_mem for_sda_req()

*
*

E I B T T

*

***************************************************************************/

USI GN32 al | oc_service_mem ()

FUNCTI ONAL_DESCRI PTI ON
This function calls the nenory all ocation functions.

____________________________________________________________________________ * [
{

if (alloc_nemfor_service descr () == -1) return (errno);

if (alloc_nemfor_buspar () == -1) return (errno);

if (alloc_nmemfor_sap () == -1) return (errno);

if (alloc_nmemfor_receive data () == -1) return (errno);

if (alloc_nemfor_sda_req() == -1) return (errno);

return( NULL) ;
}

USI GN32 al | oc_nmem for_service_descr ()

{

if ((usr_sdb _ptr = (T_FDL_SERVI CE_DESCR *)
menory_al | ocation (sizeof (T_FDL_SERVICE DESCR))) == NULL)
return (ERROR);

return (NULL);

}

USI GN32 al | oc_nmem for_buspar ()
{

if ((buspar_ptr = (T_BUSPAR BLOCK *)
menory_al | ocation (sizeof (T_BUSPAR BLOCK))) == NULL)
return (ERROR);

if ((buspar_ptr->ident = (USIG\8 *)
menory_al | ocati on(si zeof (USI GN8) *14)) == NULL)
return (ERROR);

return (NULL);
}

May 20, 1996 © 1995 PEP Modular Computers Page D-29



Appendix D Demo Examples Profibus Layer 2 User's Manual

USI GN32 al l oc_mem for_sap ()
{

if ( (sap_descr_ptr = (T_FDL_SAP_DESCR *)
menory_al | ocation (sizeof (T_FDL_SAP _DESCR))) == NULL )
return (ERROR);

if ((sap_block _ptr = (T_FDL_SAP_BLOCK *)
menory_al | ocation (sizeof (T_FDL_SAP BLOCK))) == NULL)
return (ERROR);

sap_descr_ptr->sap_bl ock_ptr = (USIGN8 *) sap_bl ock_ptr;

return (NULL);
}

USI GN32 al l oc_nmem for_receive_data ()

{

T_FDL_SR BLOCK * sr_ptr;
USI G\8 * buf _ptr;
USI GN16 i ;

if ((resrc_sdb_ptr = (T_FDL_SERVI CE_DESCR *)
menory_al | ocation (sizeof (T_FDL_SERVICE DESCR))) == NULL)
return (ERROR);

if ((resrc_descr_ptr = (T_FDL_RESRC DESCR *) menory_all ocation
(sizeof (T_FDL_RESRC DESCR))) == NULL)
return (ERROR);

if ((wthdr_resrc_sdb_ptr = (T_FDL_SERVI CE_DESCR *)
menory_al | ocation (sizeof (T_FDL_SERVICE DESCR))) == NULL)
return (ERROR);

if ((wthdr_resrc_descr_ptr = (T_FDL_RESRC DESCR *) nenory_all ocation
(sizeof (T_FDL_RESRC DESCR))) == NULL)
return (ERROR);

if ((buf_ptr = nenory_allocation (NR OF_ RESRC * | ND_ BUF LEN)) == NULL)
return (ERROR);

if ((read_buf = menory_allocation (IND_BUF _LEN)) == NULL)
return (ERROR);

if ((sr_ptr = (T_FDL_SR BLOCK *) nenory_al |l ocation
(NR_OF_RESRC * sizeof (T_FDL_SR BLOCK))) == NULL)
return (ERROR);

if ((rec_resrc_ptr = (T_FDL_SERVI CE DESCR *) menory_al |l ocation
(NR_OF_RESRC * sizeof (T_FDL_SERVICE DESCR))) == NULL)
return (ERROR);

Page D-30 © 1995 PEP Modular Computers

May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

if ((rd_backup_ptr = (RD _BUF_BLOCK *) menory_al |l ocation
(NR_OF_RESRC * sizeof (RD BUF_BLOCK))) == NULL)
return (ERROR);

for(i = 0; i < NR.OF_RESRC; i++)
{
Sr_ptr[i].resource. buffer_ptr = &buf _ptr[i * I ND BUF_LEN];
sr_ptr[i].resource.length = | ND_BUF_LEN,
(T_FDL_SR BLOCK *) rec_resrc_ptr[i].descr_ptr = &sr_ptr[i];
resrc_parklist[i] = &ec_resrc_ptr[i];
rd_backup_ptr[i].len = NULL;
if (1 == (NROF_RESRC - 1) )
rd_backup_ptr[i].next_ptr = & d_backup_ptr[O0];
el se

rd_backup_ptr[i].next_ptr & d_backup_ptr[i+1];

}

free_backup_ptr
ful |l _backup_ptr

rd_backup_ptr;
rd_backup_ptr;

return (NULL);
}

USI GN32 al l oc_nmem for_sda_req ()

{
USI GN32 mem t ype,

if ((sda_sdb_ptr = (T_FDL_SERVI CE_DESCR *)
menory_al | ocation (sizeof (T_FDL_SERVICE DESCR))) == NULL)
return (ERROR);

if ((send_sr_block = (T_FDL_SR BLOCK *)
menory_al | ocation (sizeof (T_FDL_SR BLOCK))) == NULL)
return (ERROR);

if (_getsys(D MPUType, si zeof (D_MPUType)) == 68030)
mem type = TPRAM

el se

memtype = O;

if ((send_buf = (USIGN8 * ) srqgcnmem
(SEND_BUF_LEN * sizeof (USIGN8), nmemtype)) == (USIG\N8 *) ERROR)
return (ERROR);

send_sr_bl ock->send_dat a. buffer_ptr = send_buf;

return (NULL);
}

May 20, 1996 © 1995 PEP Modular Computers Page D-31



Appendix D Demo Examples Profibus Layer 2 User's Manual

VO D *nmenory_al | ocation (I ength)
USI GN16 | engt h;

/************************************************************************/

/* Functionbody nenory_allocation (Iength) */
/* */
[* --> Wth the parameter "length" nmenory space w || be demanded */
/* */
[* --> The return value of the function is a pointer to the first */
/* Byte of the allocated nmenory */

/************************************************************************/

{

USI GN8 *resul t;

result = (USIGN8 *) mall oc(length);
return (result);

}

VO D nenory_deal | ocation (ptr)

USIGN8 * ptr;

/************************************************************************/
/* Functionbody nenory_deallocation (ptr) */
/* */
[* --> The parameter "ptr" is a pointer to the first byte of */
/* menory space which will be deallocated by this function */

/************************************************************************/

{
free((VOD *)ptr);

return;

}

Page D-32 © 1995 PEP Modular Computers May 20, 1996



Profibus Layer 2 User’s Manual Appendix D Demo Examples

FUNCTI ONAL_DESCRI PTI ON
This function copies a given nunber of Bytes (length, 1-65535) from
the source_address to the destination_address.

VO D bl ock_copy (source, dest, |ength)
regi ster USI GN8 *source;
regi ster USIGN8 *dest;
regi ster USIGN16 | engt h;

{

USI GN16 | ;

for (1=0;l<length;l++)
{dest[l] = source[l]

}
}

May 20, 1996 © 1995 PEP Modular Computers Page D-33



Appendix D Demo Examples Profibus Layer 2 User's Manual

This page has been intentionally left blank

Page D-34 © 1995 PEP Modular Computers May 20, 1996



Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions We buy equipment Learn more!

Extend the life of your critical industrial, Planning to,upgrade your/current Visit us at artisantg.com for more info
commercial, and military systems with our equipment? Have/surplus equipment taking on price quotes, drivers, technical

superior service and support. up’shelf'space? Well give'it a new home. specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, represéntative, or authorized distributor for any manufacturer listed herein.

(217) 352-9330 | sales@artisantg.com | artisantg.com TECHNOLOGY GROUP

We’re here to make your life easier. How can we help you today? Vl ARTISAN




