
(217) 352-9330 | sales@artisantg.com | artisantg.com

-~ ARTISAN® ~I TECHNOLOGY GROUP

Your definitive source
for quality pre-owned
equipment.

Artisan Technology Group

Full-service, independent repair center
with experienced engineers and technicians on staff.

We buy your excess, underutilized, and idle equipment
along with credit for buybacks and trade-ins.

Custom engineering
so your equipment works exactly as you specify.

• Critical and expedited services • Leasing / Rentals/ Demos

• In stock/ Ready-to-ship • !TAR-certified secure asset solutions

Expert team I Trust guarantee I 100% satisfaction

All trademarks, brand names, and brands appearing herein are the property of their respective owners.

Find the Kontron / PEP VM30 at our website: Click HERE

tel:2173529330
mailto:sales@artisantg.com
https://artisantg.com
https://www.artisantg.com/TestMeasurement/70578-1/Kontron-PEP-VM30-Single-Board-Computer
https://www.artisantg.com/TestMeasurement/70578-1/Kontron-PEP-VM30-Single-Board-Computer

Profibus Layer 2 User’s Manual Preface

PROFIBUS Protocol Software Layer 2

for MC68302-based Controllers

OS-9/68K

Version 3.12

User’s Manual
Issue 2

May 20, 1996 © 1995 PEP Modular Computers Page 0-1

Andy
Click here to return

Preface Profibus Layer 2 User’s Manual

REVISION HISTORY

PROFIBUS Protocol Software Layer 2 User’s Manual
Version 3.12

Issue Brief Description of Changes S/W Index Date of Issue
1 First Issue 3.1 June, 1993

1.0.1 Corrections to Chapter 4 3.1 April, 1994
2 Updated to Version 3.12 3.12 February, 1995

This document contains proprietary information of Softing GmbH, translated and reproduced under license by PEP
Modular Computers. It may not be copied or transmitted by any means, passed to others, or stored in any retrieval
system or media, without the prior consent of PEP Modular Computers or its authorized agents.

The information in this document is, to the best of our knowledge, entirely correct. However, PEP Modular
Computers cannot accept liability for any inaccuracies, or the consequences thereof, nor for any liability arising from
the use or application of any circuit, product, or example shown in this document. PEP Modular Computers rely on
the originator of the Software for information contained in this manual and consequently cannot ensure that the
information is correct or contains changes which PEP Modular Computers have not been informed of.

PEP Modular Computers reserve the right to change, modify, or improve this document or the product described
herein, as seen fit by PEP Modular Computers without further notice.

Page 0-2 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Preface

PEP Modular Computers® Two Year Limited Warranty

We grant the original purchaser of PEP products the following hardware warranty. No other warranties that may be
granted or implied by anyone on behalf of PEP are valid unless the consumer has the express written consent of
PEP Modular Computers.

PEP Modular Computers warrants their own products (excluding software) to be free from defects in workmanship
and materials for a period of 12 consecutive months from the date of purchase. This warranty is not transferable nor
extendible to cover any other consumers or long term storage of the product.

This warranty does not cover products which have been modified, altered, or repaired by any other party than
PEP Modular Computers or their authorized agents. Furthermore, any product which has been, or is suspected of
being damaged as a result of negligence, misuse, incorrect handling, servicing or maintenance; or has been damaged as a
result of excessive current/voltage or temperature; or has had its serial number(s), any other markings, or parts thereof
altered, defaced, or removed will also be excluded from this warranty.

A customer who has not excluded his eligibility for this warranty may, in the event of any claim, return the product at
the earliest possible convenience, together with a copy of the original proof of purchase, a full description of the
application it is used on, and a description of the defect; to the original place of purchase. Pack the product in such a way
as to ensure safe transportation (we recommend the original packing materials), whereby PEP undertakes to repair or
replace any part, assembly or sub-assembly at our discretion; or, to refund the original cost of purchase, if appropriate.

In the event of repair, refund, or replacement of any part, the ownership of the removed or replaced parts reverts to
PEP Modular Computers, and the remaining part of the original guarantee, or any new guarantee to cover the
repaired or replaced items, will be transferred to cover the new or repaired items. Any extensions to the original guarantee
are considered gestures of goodwill, and will be defined in the "Repair Report" returned from PEP with the repaired or
replaced item.

Other than the repair, replacement, or refund specified above, PEP Modular Computers will not accept any liability
for any further claims which result directly or indirectly from any warranty claim. We specifically exclude any claim for
damage to any system or process in which the product was employed, or any loss incurred as a result of the product not
functioning at any given time. The extent of PEP Modular Computers liability to the customer shall not be greater
than the original purchase price of the item for which any claim exists.

PEP Modular Computers makes no warranty or representation, either express or implied, with respect to its
products, reliability, fitness, quality, marketability or ability to fulfill any particular application or purpose. As a result,
the products are sold "as is," and the responsibility to ensure their suitability for any given task remains the purchaser's.

In no event will PEP be liable for direct, indirect, or consequential damages resulting from the use of our hardware or
software products, or documentation; even if we were advised of the possibility of such claims prior to the purchase of, or
during any period since the purchase of the product.

Please remember that no PEP Modular Computers employee, dealer, or agent are authorized to make any
modification or addition to the above terms, either verbally or in any other form written or electronically transmitted,
without consent.

May 20, 1996 © 1995 PEP Modular Computers Page 0-3

Preface Profibus Layer 2 User’s Manual

TABLE OF CONTENTS

Page

1. Introduction . 1-1
1.1 Scope . 1
1.2 Documentation References . 1
1.3 Ordering Information . 2

2. Function and Architecture . 2-1
2.1 Basic Properties . 1
2.2 Protocol Architecture . 1

Figure 2.2.0.1: PROFIBUS Protocol Architecture . 2
2.3 Layer 1 (Physical Layer) . 3

Table 2.3.0.1: RS-485 Transmission Technique . 3
2.4 Layer 2 (Data Link Layer) . 4

2.4.1 Overview . 4
Table 2.4.1.1 Data Transmission Services of Layer 2 . 5
Table 2.4.1.2 Technical Features of Layers 1 and 2 . 6

2.4.2 Implementation Overview . 6
2.4.3 Resource Circulation . 7

3. Hardware Configuration . 3-1
3.1 PROFIBUS Controllers . 1

Table 3.1.0.1: CPU and Controller Characteristics . 1
3.2 The MC68302 IMP (Integrated Multiprotocol Processor) . 2

3.2.1 Overview . 2
3.2.2 Microprogramming . 2
3.2.3 Using Internal Function Groups of the MC 68302 . 2
3.2.4 External Wiring of the MC68302 . 3

3.3 PROFIBUS Physical Layer . 4
3.3.1 Version 1 . 4

Table 3.3.1.1 Electrical Characteristics . 4
Figure 3.3.1.2 Repeater in Linear Bus Topology . 6
Table 3.3.1.3 Connector Pin Assignments and Layout . 7

3.4 SC-485F Serial Communications Controller (SCC) Configuration . 8

4. Software Architecture . 4-1
4.1 OS-9 File System and Architecture . 1

Figure 4.1.0.1: OS-9 Software Architecture . 6
4.2 PROFIBUS Installation . 7

4.2.1 Starting PROFIBUS . 7
4.2.2 Running PROFIBUS on a VM30 System . 8
4.2.3 Running PROFIBUS on a VIUC System . 9
4.2.4 Testing the PROFIBUS Connection . 10

4.3 Intercommunication Interface . 11
4.4 PROFIBUS Library “pbl2hlf.l” . 12

4.4.1 General Functions . 13
open_PROFI . 13
close_PROFI . 13

4.4.2 Data Transfer Functions . 14
open_JOB (Obsolete) . 15
open_JOB_S . 17
open_JOB_R_SDX . 19
open_JOB_R_SRD . 21
close_JOB . 23

Page 0-4 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Preface

send_SDA . 24
send_SDN . 25
send_SRD . 26
send_RPLUPD_S . 28
send_RPLUPD_M . 29
ready_IND . 30
receive_IND . 30
release_IND . 32

4.4.3 Management Functions . 33
get_LAS . 33
get_CTR . 34
get_TRR . 35
enable_EVENT . 36
disable_EVENT . 37

4.5 FDL Interface Library “pbl2llf.l” . 39
4.5.1 Function fdl_open . 39
4.5.2 Function fdl_req . 39
4.5.3 Function fdl_con_ind . 39
4.5.4 Function fdl_con_ind_poll . 40
4.5.5 Function fdl_close . 40
4.5.6 FDL Services . 40

Figure 4.5.6.1: SDA Service . 42
Figure 4.5.6.2: SDN Service . 42
Figure 4.5.6.3: SRD Service . 43
Figure 4.5.6.4 Start of CSRD Service . 44
Figure 4.5.6.5 End of CSRD Service . 45
SDA (Send Data with Acknowledge) Request . 46
SDA (Send Data with Acknowledge) Confirmation . 48
SDA (Send Data with Acknowledge) Indication . 50
SDN (Send Data with No Acknowledge) Request . 52
SDN (Send Data with No Acknowledge) Confirmation . 54
SDN (Send Data with No Acknowledge) Indication . 56
SRD (Send and Request Data with Reply) Request . 57
SRD (Send and Request Data with Reply) Confirmation . 59
SRD (Send and Request Data with Reply) Indication . 61
REPLY_UPDATE Request . 63
REPLY_UPDATE Confirmation . 65
SEND_UPDATE Request . 67
SEND_UPDATE Confirmation . 69
LOAD_POLL_LIST Request . 71
LOAD_POLL_LIST Confirmation . 73
Cyclic Send and Request Data with Reply (CSRD) Confirmation . 74
POLL_ENTRY Request . 76
POLL_ENTRY Confirmation . 77
DEACT_POLL_LIST Request . 78
DEACT_POLL_LIST Confirmation . 79

4.5.7 FMA Services . 80
FMA2_RESET Request . 82
FMA2_RESET Confirmation . 83
FMA2_SET_BUSPARAMETER Request . 84
FMA2_SET_BUSPARAMETER Confirmation . 86
FMA2_CHANGE_BUSPARAMETER Request . 87
FMA2_CHANGE_BUSPARAMETER Confirmation . 89
FMA2_SET_STATISTIC_CTR Request . 90
FMA2_SET_STATISTIC_CTR Confirmation . 91
FMA2_READ_BUSPARAMETER Request . 92

May 20, 1996 © 1995 PEP Modular Computers Page 0-5

Preface Profibus Layer 2 User’s Manual

FMA2_READ_BUSPARAMETER Confirmation . 93
FMA2_READ_STATISTIC_CTR Request . 95
FMA2_READ_STATISTIC_CTR Confirmation . 96
FMA2_READ_TRR Request . 97
FMA2_READ_TRR Confirmation . 98
FMA2_READ_LAS Request . 99
FMA2_READ_LAS Confirmation . 100
FMA2_READ_GAPLIST Request . 101
FMA2_READ_GAPLIST Confirmation . 102
FMA2_EVENT Indication . 103
FMA2_IDENT Request . 104
FMA2_IDENT Confirmation . 106
FMA2_LSAP_STATUS Request . 108
FMA2_LSAP_STATUS Confirmation . 110
FMA2_LIVELIST Request . 112
FMA2_LIVELIST Confirmation . 113
FMA2_ACTIVATE_SAP Request . 114
FMA2_ACTIVATE_SAP Confirmation . 116
FMA2_ACTIVATE_RSAP Request . 117
FMA2_ACTIVATE_RSAP Confirmation . 119
FMA2_DEACTIVATE_SAP Request . 120
FMA2_DEACTIVATE_SAP Confirmation . 121

4.5.8 Services for the Administration of the Resources . 123
WAIT_FOR_FMA2_EVENT Request . 124
WAIT_FOR_FMA2_EVENT Confirmation . 125
WITHDRAW_EVENT Request . 126
WITHDRAW_EVENT Confirmation . 127
PUT_RESRC_TO_FDL Request . 128
PUT_RESRC_TO_FDL Confirmation . 130
WITHDRAW_RESRC_FROM_FDL Request . 131
WITHDRAW_RESRC_FROM_FDL Confirmation . 132

4.5.9 Parameterizing Layer 2 . 135

5. Release Notes . 5-1

Appendix A Status Values . A-1

Appendix B Definition of Constants . B-1

Appendix C. Type Definitions . C-1

Appendix D. Demo Examples . D-1

Appendix SCC. Serial Communications Controller

Page 0-6 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 1 Introduction
11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

1

1. INTRODUCTION

This manual describes the implementation of the PROFIBUS layer 2 protocol software running under the realtime
kernel/operating system OS-9 and PEP’s MC68302 controllers (i.e. IUC/ VIUC/ VM30/ SMART I/O).

OS-9 extensions allow programming in the usual way. The layer 2 library allows the user to use PROFIBUS services
without complex programming sequences, reducing the time to get the layer 2 application to a maximum.

The direct connection to the OS-9/NFM (Network File Manager) supports features such as transparent file access, loading
of tasks, remote login and remote source level debugging. With these features, application and communication tasks
running on an intelligent I/O node can be tested and debugged from a host computer (e.g. a VME system).

The topics described in this manual include:

• Functional description of the software architecture
• Guidance for installation, hardware adjustment and start up of the communications software
• Descriptions of the PROFIBUS objects and services
• Description of the communication interface and the layer 2 libraries
• OS-9 implementation
• Application example

1.1 Scope

This implementation is based on the PROFIBUS Standard DIN 19245, Part 1 from April 1991.

The implementation encompasses:

• all communication services,
• all (including the options) management services,
• multi-master functionality (for up to 127 participants),
• full address expansion (64 Service Access Points, 64 segment addresses).

1.2 Documentation References

/1/ PROFIBUS Standard, DIN 19245 Part 1, Beuth Verlag GmbH Berlin, April 1991
/2/ PROFIBUS - the process fieldbus standard in industrial communications,

PROFIBUS Nutzerorganisation e.V., Herseler Strasse 31, W-5040 Wesseling, Germany
/3/ MC68302, Integrated Multiprotocol Processor User's Manual, Motorola Inc. 1990
/4/ M68000 Family, Part 1 - Principles and Architecture, te-wi Verlag GmbH Munich
/5/ Documentation PROFIBUS Microcode, Motorola Inc., March 1991
/6/ PROFIBUS - the Fieldbus for Industrial Automation, Carl Hanser Verlag Munich and Vienna
/7/ OS-9 Advanced System Software, Microware Systems Corporation, Iowa, U.S.A
/8/ SMART I/O, [V]IUC, VM30 User’s Manual, PEP Modular Computers, W-8950 Kaufbeuren, Germany
/9/ Using OS-9/NET, Microware Systems Corporation, Iowa, U.S.A

May 20, 1996 © 1995 PEP Modular Computers Page 1-1

Chapter 1 Introduction Profibus Layer 2 User’s Manual

1.3 Ordering Information

Name Description Order Number
OS9PFB-STARTER-II Starter kit, complete package to support

two PROFIBUS nodes
2180-432 /1& Old
1662 New (since Nov. 94)

PROFI-LIZ-L2+L7 PROFIBUS layer 2 & 7 quantity licenses 2180-432 Old
1666 New (since Nov. 94)

PROFI-LIZ-L2 PROFIBUS layer 2 only licenses 2180-433 Old
1675 New (since Nov. 94)

Page 1-2 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 2 Function and Architecture

2

2. FUNCTION AND ARCHITECTURE

2.1 Basic Properties

PROFIBUS defines the technical and functional characteristics of a serial fieldbus which interconnects distributed digital
field devices in the low (sensor/actuator level) up to the medium (cell level) performance range. The system contains
Master and Slave devices.

A Master is able to control the bus, i.e. it may transfer messages without remote request when it has right to access the
bus. Masters are called active stations in the PROFIBUS protocol. Typical masters are PLCs, CNCs and Cell
Controllers.

Slave devices are simple peripheral devices. Typical slaves are sensors, actuators and transmitters. They attain no bus
access rights, i.e. they may only acknowledge received messages, or at the request of a master, transmit messages to that
master. Slaves are also called passive stations in the PROFIBUS protocol. Slaves need only a small part of the protocol
and therefore the protocol is especially simple to implement.

The data transmission technique may be adapted to the intended operation area. All variants use the same protocol for
medium access and transmission and have the same functions at the interface to the common Application layer.

PROFIBUS includes a powerful layer 7 which contains an optimized interface to layer 2. The logical addressing at the
user level enables efficient transmission and fast processing in the end devices.

The PROFIBUS standard defines a comprehensive functionality. Subsets of this functionality are specified in profiles for
various application areas.

2.2 Protocol Architecture

PROFIBUS includes definitions for all communication layers of the OSI (Open Systems Interconnection) Reference
Model. The architecture of the PROFIBUS protocol is shown in the Figure below.

The Layers 1 and 2 specify the transmission medium, the physical and electrical properties of the interface, the medium
access protocol and the execution of the layer 2 services with their transmission protocols and protocol data units.

The layers 1 and 2 were published as a pre-standard in DIN V 19 245 Part 1 in 1988. Before the final publication as a
standard in December 1990 by the Deutsche Elektrotechnische Kommision (DKE), the applicability of the PROFIBUS
transmission technique had been substantiated by pilot implementations and extensive tests.

The layers 3 to 6 are not explicit. The functions of these layers that are necessary for the application field of PROFIBUS
are combined in the Lower Layer Interface (LLI). The LLI is part of layer 7.

Layer 7 (application protocol) provides the communication functions to the user. They are defined in the Fieldbus
Message Specification (FMS). FMS realizes the interface to the application process and provides the PROFIBUS user
with a variety of powerful application services to access the communication objects of an application process.

May 20, 1996 © 1995 PEP Modular Computers Page 2-1

Chapter 2 Function and Architecture Profibus Layer 2 User’s Manual

Figure 2.2.0.1: PROFIBUS Protocol Architecture

APPLICATION PROCESS

PROFIBUS FMS-Services

Application Layer Interface (ALI)

Application Layer

Fieldbus Message Specification (FMS)

Lower Layer Interface (LLI)

7

Presentation Layer

Session Layer

Transport Layer

Network Layer

6
5
4
3

Data Link Layer 2

Physical Layer 1

Fieldbus Data Link (FDL)

I.S.RS485FO

M
a
n
a
g
e
m
e
n
t

FMA7

FMA 1/2

DIN
19245
Part 2

DIN
19245
Part 1

PROFIBUS - Transmission Medium

Media Access Control (MAC)

In addition, the PROFIBUS protocol provides Network Management functions.

The functions of layer 7 include a subset of the MMS functions (MMS, Manufacturing Message Specification) of the
MAP Protocol. The complex functions of MMS are optimized for the requirements at the fieldbus level. Additional
fieldbus specific functions for the administration of the communications objects were defined.

Page 2-2 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 2 Function and Architecture

2.3 Layer 1 (Physical Layer)

The area of application of a fieldbus system is substantially effected by the selection of the transmission medium and the
physical bus interface. Besides the requirements on the data integrity the costs of provision and installment of the cable
are of critical significance.

Hence the PROFIBUS standard defines different versions of the transmission technique under retention of a unique
medium access protocol. The RS-485 interface was defined as the base version of the transmission technique.

The US standard fulfills the user requirements on the transmission technique in the areas of discrete part manufacturing,
building automation and drive control, as well as in most parts of process control.

In addition to the RS-485 specification, PROFIBUS defines clearly all variable interface parameters, the connector and the
bus termination.

The following table defines the basic properties of the RS-485 transmission technique.

Table 2.3.0.1: RS-485 Transmission Technique

Basic Properties of the RS-485 Transmission Technique
Network topology: Linear bus, terminated at both ends with the line impedance. Stubs are possible

Medium: Twisted Pair cable. Shielding may be omitted depending on the application

Number of Stations: 32 Stations without repeaters. When using repeaters extendible to 127
(including 5 repeaters)

Bus length: max. 1200m, with repeaters extendible up to 4800m depending on the transmission speed

Transmission speed: 9.6 19.2 93.75 187.5 and 500 kbit/s selectable

Connector: 9-Pin D-Sub Connector

May 20, 1996 © 1995 PEP Modular Computers Page 2-3

Chapter 2 Function and Architecture Profibus Layer 2 User’s Manual

2.4 Layer 2 (Data Link Layer)

2.4.1 Overview

The second layer of the OSI Reference Model realizes the functions of the medium access control and data integrity as
well as the execution of the transmission protocols and messages. Layer 2 in PROFIBUS is designated as Fieldbus Data
Link (FDL).

The Medium Access Control (MAC) defines when a station may transmit data. The MAC has to ensure that only one
station has the right to transmit data at any time.

The PROFIBUS protocol has taken two essential requirements for the Medium Access Control into account:

In the case of communication between complex automation components (Masters) with equal rights it has to ensure that
each of these stations gets sufficient opportunity to execute its communication tasks within a defined time interval.

In the case of communication between a complex automation device and associated simple peripheral devices (Slaves) it
must realize a cyclic real time data exchange as simply as possible.

Therefore, the PROFIBUS medium access protocol includes the token passing method for the communication between
complex stations (Masters) and additionally the Master-Slave method for the communication of the complex stations with
the simple peripheral devices (Slaves). This combined method is called hybrid medium access.

The token passing method ensures, by means of a token, the assignment of the bus access right within a precisely defined
time interval. The token message is a special telegram to transfer the right for transmission from one Master to the next
Master. It is circulated in a (configurable) maximal token rotation time between all Masters. In the PROFIBUS protocol
the token passing method is used only between the complex stations (Masters).

The Master-Slave method allows the Master (active station) that currently owns the right for data transmission to
communicate with the associated Slave devices (passive stations). Hereby the Master has the possibility to fetch
messages from the Slaves and to transmit messages to the Slaves.

Since in the field area both medium access methods have advantages depending on the application, the hybrid medium
access method of PROFIBUS can realize:

• a pure Master-Slave system

• a pure Master-Master system (token passing)

• a system with a combination of both methods

For a certain time after an active station receives the token message it is allowed to exercise the Master function on the
bus and communicate with all Slave stations in a Master-Slave communication relationship and with all Master stations
in a Master-Master communication relationship.

A token ring means the organizational chain of active stations building a logical ring with their station addresses. In this
ring the token, the medium access right, is circulated from one Master to the next Master in a defined sequence (increasing
addresses).

In the start-up phase of the bus system the task of the Medium Access Control (MAC) of the active stations is to detect
the logical assignment and to establish the token ring. In the operational phase defective or switched-off active stations
have to be eliminated from the ring and new active stations have to be included in the ring. These features and also the
recognition of defects in the transmission medium and the tranceiver, the detection of errors in the station addressing (e.g.
multiple usage) or in the token passing (e.g. multiple token or lost token) are characteristic for the PROFIBUS Medium
Access Control.

Page 2-4 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 2 Function and Architecture

Another important task of Layer 2 is data integrity. The PROFIBUS Layer 2 frame formats ensure a high data integrity.
All frames have Hamming Distance HD=4. This is achieved by applying the International Standard IEC (International
Electrotechnical Commission) 870-5-1 (choice of special start and end delimiters for the telegrams, slip free
synchronization, parity bit, control byte ...).

Basically, the PROFIBUS Layer 2 operates connectionless. In addition to the logical peer-to-peer data transmission it
provides broadcast and multicast communication.

Broadcast communication means that an active station sends an unconfirmed message to all other stations (Masters and
Slaves). Multicast communication means that an active station sends an unconfirmed message to a group of stations
(Masters or Slaves).

Layer 2 provides data transmission services to Layer 7. Three services for acyclic data transmission and one service for
cyclic transmission are provided (see Table 2.4.1.1). In addition to the data transmission services layer 2 provides services
for Network Management (FMA 1/2).

All layer 2 services are executed at the interface to the LLI through Service Access Points (SAPs). Layer 7 uses these
Service Access Points for the addressing of the logical communication relationships. In the active and passive stations
multiple SAPs are allowed simultaneously. One distinguishes between source (SSAP) and destination (DSAP) Service
Access Points.

Table 2.4.1.1 Data Transmission Services of Layer 2

Data Transmission Services of Layer 2
Send Data With Acknowledgement (SDA) acyclic

Send and Request Data With Reply (SRD) acyclic

Send Data With No Acknowledge (SDN) acyclic

Cyclic Send And Request Data With Reply (CSRD) cyclic

May 20, 1996 © 1995 PEP Modular Computers Page 2-5

Chapter 2 Function and Architecture Profibus Layer 2 User’s Manual

The technical features of layers 1 and 2, as specified in DIN 19245 Standard Part 1 is shown below.

Table 2.4.1.2 Technical Features of Layers 1 and 2

Technical Features of Layers 1 and 2, DIN 19245 Part 1
Transmission technique corresponding to RS 485, twisted pair, galvanic separation and shielding optional

Further transmission techniques (Fiber optics and Intrinsic Safety) are in preparation

Line length maximal 1200m, with repeaters extendible up to 4800m (depending on the transmission rate)
Transmission rate selectable from 9.6 to 500 kbits/s

Total max. 127 stations (active and passive)

NRZ Bit coding (non return to zero)

Asynchronous transmission, half-duplex, slip protected synchronization of the UART characters

Bus access hybrid, combinable decentral and central access

Three acyclic and one cyclic data transmission service

Multi- and broadcast messages and management services

Frame formats according to IEC-870-5-1

Data integrity with Hamming Distance HD=4

Two message priorities

2.4.2 Implementation Overview

The structure of the layer 2 protocol software reflects the division of the layer 2 (Fieldbus Data Link, FDL) in both sub-
layers:

• FLC (Fieldbus Link Control, Transfer Control)
• MAC (Medium Access Control, Bus Access Control)

The FLC sub-layer is accessed via a procedural interface from the layer 2 user. This interface is implemented as a request
block interface, therefore the layer 2 user has to provide memory for the telegrams that are to be transferred and for the
service parameters. Thereafter the layer 2 user hands over these data structures to the layer 2 by function request or, in the
same way, the incoming confirmations or indications can be periodically checked via a cyclic function request.

During requests the FLC sub-layer checks the calling parameter, prepares the telegram and passes it to the MAC sub-
layer. During confirmations and indications it accepts the returned telegram and carries out the receipt parameters.

The MAC sub-layer, on the other hand, is completely interrupt controlled. The token protocol is also processed when, for
example, the application has entered an endless loop (i.e. as a result of a programming error). The relatively complex
access protocol is used as machine condition, where condition changes are triggered using interrupts. The various timers
and/or the receipt or transmission of whole or part telegrams act as interrupt sources.

The FLC and MAC sub-layers communicate via various organizational structures contained in memory.

Page 2-6 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 2 Function and Architecture

2.4.3 Resource Circulation

For the hand-over of the service parameters, but most importantly for the storage of the received telegrams, a memory
area must be allocated in the form of parameter blocks and telegram buffers. These memory areas are allocated according
to the service call and described as resources. The number and order of necessary resources depends upon the service call
dynamics, so it would be a waste to hold them permanently in layer 2 since their stored size and order would only be
optimized for one particular type of service call and all other calls would make excessive demands upon the memory.

The user of layer 2 (FDL-User) therefore provides these resources on demand and according to the called service.

Request - Confirmation

For the follow-up action (request-confirmation), i.e when the FDL-User has initiated a service request and then awaits a
confirmation, a cycle of resources is created. The resources provided during the request remain in the FDL until the receipt
of the confirmation and only then are they returned to the FDL-User. Thereafter they are available for use by other
services. Typical examples are SDA, SDN and SRD services.

The only time this standard procedure is not applied is when the resources are to remain longer in the FDL, i.e. when
they represent the Poll-List or a Service Access Point. In this event there is always a complimentary service that calls
these resources back. A typical example is the service pair LOAD_POLL_LIST and DEACT_POLL_LIST or
ACTIVATE_SAP and DEACTIVATE_SAP.

May 20, 1996 © 1995 PEP Modular Computers Page 2-7

Chapter 2 Function and Architecture Profibus Layer 2 User’s Manual

The update services take up an intermediate position. Here a pause must be made instead of on the next SRD cycle,
whereby the buffer arrives and is then transferred by the update call n in the FDL after the confirmation call n+1 is first
sent back.

Indications

No complimentary primitive exists in the layer 2 of the PROFIBUS protocol for primitive service indication in order to
stop the resource cycle. A special service call that is not normally specified must therefore be installed in the FDL in
order to take care of the necessary indications. The details of the planned services are described in section 4.5 of this
manual.

It is the responsibility of the FDL-User to ensure that enough entry buffers and parameter blocks are steadily made
available to the FDL in order to work on the received messages. These resources can be transferred on their own or
interlinked in packages. The resources must be classified as Service Access Points or Poll-List entries. If no entry buffer
is available for a particular Service Access Point or Poll-List entry, then the received telegram is not further worked on.

The classification of entry buffers to Service Access Points or Poll-List entries in the available implementation is SAP
referenced. If in a distinct Service Access Point five entry buffers, for example, are transferred then exactly five telegrams
can be received. The telegrams are then physically filed away in these five buffers using a copy action.

CSRD - Presentation of the Problem

The actions within layer 2 are normally embedded in unordered service sequences in higher levels. Especially in
collaboration with level 7 of the PROFIBUS protocol, the resource circulation through the lower level interface of level 7
is controlled in such a way that no bottlenecks can occur.

Due to the normally bidirectional structure of the communications relationships (request-response), the installment of the
transferred requests can be controlled by the installments of the related confirmations, and indirectly through the
communications relationship, the installments of the indications.

The CSRD service of layer 2, however, breaksthrough the principals of the resource circulation, in that at the start of the
Poll-List a non realizable flood of CSRD confirmations are made from the master and SRD confirmations made from the
slave.

It is therefore recommended that in order to take advantage of the normal planned possibilities of the CSRD only SRD
cycles containing useful data are worked on .This is possible through the input of “DATA” in the confirm_mode
parameter of the LOAD_POLL_LIST service or in the indication_mode parameter of the FMA2_RSAP_ACTIVATE
service.

Page 2-8 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 3 Hardware Configuration

3

3. HARDWARE CONFIGURATION

3.1 PROFIBUS Controllers

The hardware is based on PEP’s family of 68302 IUCs (Intelligent Universal Controllers) and CPU modules. Different
hardware platforms fulfill the various performance requirements (1.5 - 10 MIPS) and configurations such as VMEbus
based systems and busless intelligent I/O nodes.

Table 3.1.0.1: CPU and Controller Characteristics

Product CPU/
F P U

MIPS
Speed
(Max)

MIPS
Speed
(MHz)

CMOS
RAM

(MByte)

RAM
Backup

ROM/
EEPROM

(Max)

Serial
I/O

MISC
Features

Power
(W)
Typ.

Max.
Temp.

(˚C)
VM30 68EC030

68882
68302

10 25/40
25/40
16/20

4/8/16/32
DRAM
0.25/1/2
SRAM

VME or
Battery

2 MB/
na

2 + 1 Local I/O
Extension

(CXC)

4.5 -40
to +85

VSBC-4 68302 1.5 16/20 0.5/1
SRAM

2/4
PSRAM*

VME or
Battery

2 MB/
64 KB

2 + 1 Local I/O
(CXC)

3.5 -40
to +85

VIUC 68302 1.5 16/20 0.5/1
SRAM

2/4
PSRAM*

VME or
Battery

2 MB/
64 KB

2 + 1 Local I/O
Extension

(CXC)
RTC,

Watchdog

3.5 -40
to +85

IUC 68302 1.5 16/20 0.25/0.5/1
SRAM

2/4
PSRAM*

CXC or
Battery

1 MB/
64 KB

2 + 1 Local I/O
Extension

(CXC)
RTC,

Watchdog

1.5 -40
to +85

SMART
I/O

68302 1.5 20 0.25/0.5/1
SRAM

2/4
PSRAM*

CXC or
Battery

1 MB/
64 KB

2 + 1 Local I/O
Extension

(CXC)
RTC,

Watchdog

1.5 -40
to +85

* PSRAM: Pseudo Static RAM

May 20, 1996 © 1995 PEP Modular Computers Page 3-1

Chapter 3 Hardware Configuration Profibus Layer 2 User’s Manual

3.2 The MC68302 IMP (Integrated Multiprotocol Processor)

3.2.1 Overview

The MC68302 contains a 68000 core together with a RISC processor, the latters main objective being the
communication e.g. the support of the various assigned protocols.
A short overview of the main function groups that are advantageous in the employment of this controller in the
realization of the PROFIBUS protocol is presented below:

System Integration Block (SIB)

• Independent Direct Memory Access (IDMA)
• Interrupt controller with two types of operation
• Parallel I/O ports, partly with interrupt generation
• 2 timers and a watchdog-timer
• On-chip 1152 byte dual-port RAM

Communications Processor (CP)

• Programmable RISC processor
• 3 Serial Communication Controllers (SCC 1 - 3)
• 6 Serial DMA channels for SCC 1-3
• SCP for synchronous communication
• 2 Serial Management Controllers (SMC)

3.2.2 Microprogramming

The MC68302 RISC processor can run a microprogram that is first loaded into the internal dual-port RAM (DP-Ram).
Here the user part of the DP-Ram (576 byte) is available for a microprogram. Motorola Inc. has developed a program that
supports the PROFIBUS protocol. The main advantage of the microprogram support is due to the fact that the RISC
processor takes over the time consuming actions during the running of the bus protocol. Through this the demand on the
68000 processor is lowered, leaving the application program with more computing power available for other tasks.

3.2.3 Using Internal Function Groups of the MC 68302

The following internal resources of the MC 68302 are used:

Dual-Port-Ram

The PROFIBUS microcode is loaded into the user part of the dual-port RAM. Nothing more is available to the user.

Serial Transmission

The PROFIBUS protocol is realized with the help of one of the three “Serial Communication Controllers” (SCC). The
cables are:

• RxD - Receive cable
• TxD - Transmission cable
• RTS - Switches the RS-485 driver during transmission

Page 3-2 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 3 Hardware Configuration

Timer

In order to operate the PROFIBUS layer 2 protocol software the two internal timers named Timer 1 and 2 are required. If
the PROFIBUS layer 7 is employed as well as the PROFIBUS layer 2, a further timer named LLI (Lower Layer Interface
of the layer 7) must be prepared. This timer is achieved with the watchdog-timer of the MC 68302.

Interrupt Sources

• Serial Communication Controller
• Timer 1
• Timer 2
• Timer 3 (LLI timer)

3.2.4 External Wiring of the MC68302

The demand on external hardware can be minimized due to the PROFIBUS microcode program. The timers used in the
realization of the PROFIBUS protocol easily reflect, without exception, the internal timers of the MC 68302. The
remaining hardware expenditure limits itself on an external quartz oscillator running at 24 MHz (9.6 to 500 kBaud). The
setting of the baud rate used is required to have an accuracy of 0.3%.

The output of the quartz oscillator leads to an input “TIN”. It serves the baud rate generator as clock input. Furthermore
the 68302 module has to be equipped with an RS485 piggyback. Together with the transmission and receive cables of the
SCC, the signal “RTS” is required in order to activate the driver components during a transmission request.

May 20, 1996 © 1995 PEP Modular Computers Page 3-3

Chapter 3 Hardware Configuration Profibus Layer 2 User’s Manual

3.3 PROFIBUS Physical Layer

In order to cover a variety of requirements regarding topology, line length, number of stations, data transfer rate and
protection against environmental influences, several physical layer versions are supported.

Version 1 encompasses NRZ bit encoding combined with EIA RS-485 signalling, targeted to low cost line couplers,
which may or may not isolate the station from the line (galvanic isolation); line terminators are required, especially for
higher data transfer rates (up to 500 kbit/s).

It is intended to specify further versions, tailored to the following requirements:

• Extended line lengths, line couplers which consume less power and which reduce the influence of defective
stations on bus operation, explosive atmosphere protection (Intrinsic Safety) and improved electromagnetic
compatibility (possibly with a fibre optic medium).

• Flexible topology, covering a large area (tree topology), applicable for data transfer rates of up to 20 kbit/s,
power transmission via the signal conductors, explosive atmosphere protection (Intrinsic Safety).

3.3.1 Version 1

The version 1 specifications describe a balanced line transmission corresponding to the US standard EIA RS-485 (EIA:
Electronic Industries Association, RS-485; Standard for electrical characteristics of generators and receivers for use in
balanced digital multipoint systems). Terminators, located at both ends of the twisted pair cable, enable the version 1
physical layer to support in particular higher speed transmission. The maximum cable length is 1.2 km for data transfer
rates ≤ 93.75 kbit/s. For 500 kbit/s the maximum length is reduced to 200m.

Table 3.3.1.1 Electrical Characteristics

Topology Linear bus, terminated at both ends, stubs ≤ 0.3 m*, no branches
Medium Shielded Twisted Pair, characteristic impedance between 100 and 130 Ω, minimum

conductor area 0.22 mm2 (24 AWG**), capacity between the conductors about 60 pF/m
Line Length ≤ 1200m, depending on the data transfer rate (cf. EIA RS-485)
Number of Stations 32 (Master stations, Slave stations or repeaters)
Data Transfer Rates 9.6/19.2/93.75 kbits/s for line lengths ≤ 600m,

500 kbit/s for line lengths ≤ 200m
Transceiver Chip e.g. SN 75176A, DS3695 or others

* Note: In contrast to the EIA RS-485 recommendations it is good practice to allow longer stubs if the total of the
capacitances of all stubs (Cstges) does not exceed the following values:
Cstges ≤ 0.6 nF @ 500 kbit/s
Cstges ≤ 1.0 nF @ 187.5 kbit/s
Cstges ≤ 3.0 nF @ 93.75 kbit/s
Cstges ≤ 15 nF @ 9.6 and 19.2 kbit/s
It is taken into consideration that the total line length includes the sum of the stub lengths.

** American Wire Gauge

Page 3-4 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 3 Hardware Configuration

The dependency of the permissible data transfer rate upon the network expanse (maximum distance between two stations)
is shown in Figure A.1 of the US standard EIA RS-422-A (also included in DIN 66259 and CCITT V.11).

Note: The recommendations concerning the line length presume a maximum signal attenuation of 6 dB. Experience
shows that the distances may be doubled if conductors with an area ≥ 0.5 mm2 (20 AWG) are used.

The line length and the number of connected stations may be increased by using repeaters (bidirectional amplifiers). A
maximum of three repeaters between two stations is permissible. If the data rate is ≤ 93.75 kbit/s and if the linked
sections form a chain (linear bus topology, no active star) the maximum permissible topology (assuming AWG 24
twisted pair) is as follows:

1 repeater: 2.4 km and 62 stations
2 repeaters: 3.6 km and 92 stations
3 repeaters: 4.8 and 122 stations

May 20, 1996 © 1995 PEP Modular Computers Page 3-5

Chapter 3 Hardware Configuration Profibus Layer 2 User’s Manual

Below shows an example of a linear bus topology, with the following characteristics:

93.75 kbit/s 4 lines, 3 repeaters
1200m line length 4800m total length
30 or 31 stations per line 122 stations

Figure 3.3.1.2 Repeater in Linear Bus Topology

2 3 311

2 3 311

Line 1

Line 2

Line 3

Rc

Rc

Rc

Rc Rc

Rc

Rc

Rc

Repeater 1

Repeater 3

Repeater 2

1 Stations Rc Characteristic resistance

Line 4

1 2 3 30

1 2 3 30

Page 3-6 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 3 Hardware Configuration

Connector Technique, Mechanical and Electrical Specifications

Bus Connector

Each station is connected to the medium via a 9-pin D-sub connector. The female side of the connector is located in the
station, while the male side is mounted to the bus cable. The mechanical and electrical characteristics are specified in ISO
4902-1980 (DIN 41652, Part 1).

Preferably a metal connector housing should be used. When put together both parts of the connector should be fixed by
conducting screws.

The connection between the cable sections and the stations should be realized as T-connectors, containing three 9-pin D-
sub connectors (two male connectors and one female connector). Such T-connectors allow disconnection or replacement of
stations without cutting the cable and without interrupting operation (on line disconnection).

Contact Designations

The pin assignments and layout for the connectors are shown below.

Table 3.3.1.3 Connector Pin Assignments and Layout

Pin No. RS-485 Ref. Signal Name Meaning
1 SHIELD * Shield, Protective Ground resp.
2 RP * Reserved for power
3 B/B’ RxD/TxD-P Receive/Transmit-Data-P
4 CNTR-P* Control-P
5 C/C’ DGND Data Ground
6 VP ** Voltage-Plus
7 RP * Reserved for Power
8 A/A’ RxD/TxD-N Receive/Transmit-Data-N
9 CNTR-N * Control-N

* Signal is only necessary at station at end of the bus cable
** Signals are optional

1 2 3 4 5

6 7 8 9

DGND
RxD/
TxD-P

RxD/
TxD-N

Front View of Male
Back View of Female

The Data Ground, connected to pin 5, and the Voltage Plus, connected to pin 6, supply the Bus Terminator.

The control signals, connected to pin 4 and pin 9, support direction control when repeaters without self control capability
are used. RS-485 signalling is recommended (but not mandatory).

The pins 2 and 7 are reserved for separate remote powering of field devices. The definition of signalling and powering
related to pins 2, 4, 7 and 9 is not subject to this standard.

May 20, 1996 © 1995 PEP Modular Computers Page 3-7

Chapter 3 Hardware Configuration Profibus Layer 2 User’s Manual

3.4 SC-485F Serial Communications Controller (SCC) Configuration

Information on the configuration of the SC-485F SCC can be found on pages 6-10 of Appendix SCC
in this manual.

Page 3-8 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4

4. SOFTWARE ARCHITECTURE

4.1 OS-9 File System and Architecture

Requirements

To run PROFIBUS V3.12 or later, OS-9/PROF V3.0 or later must be installed.

The following files belong to the PROFIBUS layer 2 software in the OS-9/PROFINET directory:

/APPLIC/LAYER_2/OBJS:

demo PROFIBUS Layer 2 application examples that use the PROFIBUS library pbL2hlf.l
demo_M
demo_S
pbmon
pbmode
pbwatch

/APPLIC/LAYER_2/SOURCE:

demo.c C-source code of the application examples
demo_M.c
demo_S.c
pbmode.c
pbmon.c
pbwatch.c

/BSP/COMMON/DATMOD:

busPB.a Assembler source of the data module including the PROFIBUS bus parameters. Multiple object
files are generated with makefile by defining different PROFIBUS devices and different
PROFIBUS station numbers

defsfile
makefile Generates multiple object files from busPB.a

/BSP/COMMON/NFMDESC:

n1PROFI.a Assembler source of the OS-9/NET device descriptor
defsfile
makefile Generates the object module n1PROFI

May 20, 1996 © 1995 PEP Modular Computers Page 4-1

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

/BSP/COMMON/OBJS:

bPB<p>_<n> Data modules containing the PROFIBUS bus parameters for PROFIBUS stations 1,2,3 ..10
(n determines the PROFIBUS station number) and the name of the PROFIBUS device that is used
as the interface (p=1 -> /profi_1, p=2 -> /profi_2, p=3 -> /profi_3)

bPB<p>_I Data module with PROFIBUS bus parameters. This module is only usable on an IUC board,
because the station number for PROFIBUS is determined by the DIP-switches on the IUC-board

bPB<p>_S Data module with PROFIBUS bus parameters. The PROFIBUS station number is defined by the
DIP-switches of one of the CxM status boards STAT-1 or STAT-2
Note: Data modules using PROFIBUS device /profi_3 are not provided.

bPB<p>_M Data module with PROFIBUS bus parameters. This module can only be used with a SMART I/O,
as the PROFIBUS station number is determined by a value stored in EEPROM.

phyPROFI PROFIBUS Layer 2 (MAC/FLC)
drvPROFI OS-9 driver, interface to PROFIBUS Layer 2
profiman OS-9 manager for PROFIBUS
n1PROFI OS-9/NET device descriptor
nfPROFI OS-9/NET driver accessing PROFIBUS as a medium to transfer data
n1_nodes Ready to use data module for OS-9/NET device n1
comPROFI Communication task linking OS-9/NET driver nfPROFI with PROFIBUS

/BSP/DEFS:

pbL2desc.d Definitions to build a PROFIBUS device descriptor
systype.d System definitions

/BSP/SMART/DEFS:

addr.d Definition files for SMART I/O
vect.d

/BSP/SMART/OBJS:

pSMART_1 PROFIBUS device descriptor for MC68302 SCC #1 on SMART I/O (default PROFIBUS interface)
pSMART_2 PROFIBUS device descriptor for MC68302 SCC #2 on SMART I/O
pSMART_3 PROFIBUS device descriptor for MC68302 SCC #3 on SMART I/O

/BSP/SMART/PBL2DESC:

p_SMART_1.a Source file of PROFIBUS device descriptor p_SMART_1
p_SMART_2.a Source file of PROFIBUS device descriptor p_SMART_2
p_SMART_3.a Source file of PROFIBUS device descriptor p_SMART_3
defsfile
makefile

Page 4-2 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

/BSP/VIUC/DEFS:

addr.d Definition files for (V)IUC
vect.d

/BSP/VIUC/OBJS:

pVIUC_1 PROFIBUS device descriptor for MC68302 SCC #1 on (V)IUC
pVIUC_2 PROFIBUS device descriptor for MC68302 SCC #2 on (V)IUC
pVIUC_3 PROFIBUS device descriptor for MC68302 SCC #3 on (V)IUC

/BSP/VIUC/PBL2DESC:

pVIUC_1.a Source file of PROFIBUS device descriptor pVIUC_1
pVIUC_2.a Source file of PROFIBUS device descriptor pVIUC_2
pVIUC_3.a Source file of PROFIBUS device descriptor pVIUC_3
defsfile
makefile

/BSP/VM30/DEFS:

addr.d Definition files for VM30
vect.d

/BSP/VM30/OBJS:

pVM30_1 PROFIBUS device descriptor for MC68302 SCC #1 on VM30
pVM30_2 PROFIBUS device descriptor for MC68302 SCC #2 on VM30
pVM30_3 PROFIBUS device descriptor for MC68302 SCC #3 on VM30

/BSP/VM30/PBL2DESC:

pVM30_1.a Source file of PROFIBUS device descriptor pVM30_1
pVM30_2.a Source file of PROFIBUS device descriptor pVM30_2
pVM30_3.a Source file of PROFIBUS device descriptor pVM30_3
defsfile
makefile

/CMDS_PEP:

mksysgo Utility to generate a C-source program from a text procedure file

May 20, 1996 © 1995 PEP Modular Computers Page 4-3

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Definition files for PROFIBUS application programs

/DEFS:

pbL2con.d PROFIBUS definitions in assembler code
pbL2type.d

pbL2con.h PROFIBUS definitions in C-programming language
pbL2type.h
pbL2hlf.h

/LIB:

pbL2.l
pbL2hlf.l
pbL2llf.l

/ROM/SYSGO:

profigo.txt Text procedure file to generate a sysgo module for a (V)IUC or VM30 to start OS-9/NET on
PROFIBUS automatically

profigo.c C-source of the text file profigo.txt generated by the utility mksysgo
viucgo.txt Text procedure file to generate a sysgo module for a VIUC to start OS-9/RAMNET and

OS-9/NET on PROFIBUS automatically
profigo.c C-source of the text file viucgo.txt generated by the utility mksysgo

/ROM/SMART:

makefile Includes examples to generate OS-9 versions with PROFIBUS for SMART I/O

/ROM/VIUC:

makefile Includes examples to generate OS-9 versions with PROFIBUS for (V)IUC

/ROM/VM30:

makefile Includes an example to generate a romable OS-9 with PROFIBUS for VM30

Note: Files belonging to OS-9/NET can be found on the.OS-9/PEP_NETPAK disk.

Page 4-4 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

OS-9 Modules for PROFIBUS

The following modules must be available in the OS-9 module directory in order to use PROFIBUS:

phyPROFI
drvPROFI
profiman
profi_<n> n = 1, 2 or 3 to determine the PROFIBUS interface port
busPB Neccessary if the application uses the functions of the library pbL2hlf.l

OS-9 Modules for OS-9/NET on PROFIBUS

These modules must be loaded into the OS-9 module directory in order to use OS-9/NET on PROFIBUS:

nfm
nfPROFI
n1
phyPROFI
drvPROFI
profiman
profi_<n> n = 1, 2 or 3 to determine the PROFIBUS interface port
busPB
n1_nodes

Note: OS-9/NET for PROFIBUS only works on active PROFIBUS stations. The PROFIBUS local station address may
not be 0.

For more information on OS-9/NET for PROFIBUS , refer to reference /9/.

May 20, 1996 © 1995 PEP Modular Computers Page 4-5

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Figure 4.1.0.1: OS-9 Software Architecture

L7 task 1

L7 task n

nmon

nfm

nfPROFI

n1

n-dat

datamodule

comPROFI

L 2 task 1

L 2 task n

PROFImanL2 manager

drvPROFIdriver interface

phyPROFI
FLC

MAC
layer 2 protocol
Software

busPB

datamodule

busparameters

profi_3profi_2profi_1device descriptors

Standard
OS-9 tasks
(eg. nmon)

OS-9 network
file manager

nfm driver

device descriptor

srvPBL7

modPBL7

L2 library
 pbL2llf

L7 library
 pbL7llf

L2 library
 pbL2hlf

Page 4-6 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.2 PROFIBUS Installation

The following command sequence is used to copy the files from the PROFIBUS disk to your system disk /dd:

chd /dm4 if you have a floppy drive connected to a SCSI controller

or

chd /dm0 if you have a floppy drive connected to the VMSC
install.PROFINET

Together with the PROFIBUS files new driver and descriptor object files of the OS-9/PROF V2.4/I2.0 release for the
CPU-Boards VM30 and (V)IUC are provided on the PROFIBUS release disk.

Note: Take care that you backup files on your system that are overwritten by the PROFIBUS disk.

4.2.1 Starting PROFIBUS

Under the directory /PROFINET a makefile provides the possibility to start PROFIBUS on different CPU types:

chd /dd/PROFINET

All neccessary files for PROFIBUS are loaded into the module directory. The file busPB1_1 is selected as module
busPB to determine the PROFIBUS device and the bus parameters:

PROFIBUS device: /profi_1
PROFIBUS station address: 1

OS-9/NET on PROFIBUS is started with the logical station name PB_1. This is defined by the data module
n1_nodes, which provides entries for ten OS-9/NET stations with logical names PB_1 to PB_10.

Additionally when calling make the user is able to control which busPB module is loaded, to select a different
PROFIBUS device and/or a different station address.

For more information type:

make

May 20, 1996 © 1995 PEP Modular Computers Page 4-7

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

4.2.2 Running PROFIBUS on a VM30 System

make pb_VM30

This starts the following procedure:

load -d ../NET/CMDS/nmon ../NET/CMDS/ndir ../NET/CMDS/nwatch ../NET/CMDS/chp
load -d ../NET/OS9SYS/OBJS/nfm
load -d BSP/COMMON/OBJS/bPB1_1
load -d BSP/COMMON/OBJS/profiman
load -d BSP/COMMON/OBJS/phyPROFI BSP/COMMON/OBJS/drvPROFI
load -d BSP/COMMON/OBJS/nfPROFI BSP/COMMON/OBJS/n1PROFI

BSP/COMMON/OBJS/n1_nodes
load -d BSP/COMMON/OBJS/comPROFI
load -d BSP/VM30/OBJS/pVM30_1
load -d APPLIC/LAYER_2/OBJS/*
load -d APPLIC/LAYER_7/OBJS/*
nmon /n1 -um &
sleep -s 2
==> include nwatch if you want to monitor the network stations <==
==> nwatch /n1 -w5 & <==
==> sleep -s 2 <==
tsmon /pipe/.sh &

The PROFIBUS modules for a VM30 are loaded and OS-9/NET is automatically started locally:

PROFIBUS device: /profi_1 upper port of VM30
PROFIBUS station address: 1

An example showing how to make a romable OS-9 for a VM30 with PROFIBUS modules is given in
/PROFINET/ROM/VM30/makefile.

Page 4-8 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.2.3 Running PROFIBUS on a VIUC System

make pb_VIUC

This starts the procedure:

load -d ../NET/CMDS/nmon ../NET/CMDS/ndir CMDS/nwatch ../NET/CMDS/chp
load -d ../NET/OS9SYS/OBJS/nfm
load -d BSP/COMMON/OBJS/bPB1_1
load -d BSP/COMMON/OBJS/profiman
load -d BSP/COMMON/OBJS/phyPROFI BSP/COMMON/OBJS/drvPROFI
load -d BSP/COMMON/OBJS/nfPROFI BSP/COMMON/OBJS/n1PROFI

BSP/COMMON/OBJS/n1_nodes
load -d BSP/COMMON/OBJS/comPROFI
load -d BSP/VIUC/OBJS/pVIUC_1
load -d APPLIC/LAYER_2/OBJS/*
load -d APPLIC/LAYER_7/OBJS/*
nmon /n1 -um &
sleep -s 2
==> include nwatch if you want to monitor the network stations <==
==> nwatch /n1 -w5 & <==
==> sleep -s 2 <==
tsmon /pipe/.sh &

The PROFIBUS modules for a VIUC are loaded and OS-9/NET is automatically started locally:

PROFIBUS device: /profi_1 upper port of VIUC
PROFIBUS station address: 1

An example showing how to make a romable OS-9 for a VIUC with PROFIBUS modules is given in
/PROFINET/ROM/VIUC/makefile.

May 20, 1996 © 1995 PEP Modular Computers Page 4-9

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

4.2.4 Testing the PROFIBUS Connection

The PROFIBUS starter kit board (referred to here as PB_2) is connected via a cable that fulfills the DIN 19245 layer 1
requirements to a second PROFIBUS board. This can either be a VIUC or a VM30 in your VMEbus system (referred to
here as PB_1).

Start PROFIBUS on PB_1 with the makefile under the directory /PROFINET depending on the CPU type:

make pb_VM30 for a VM30 as the VMEbus Master CPU

make pb_VIUC for a VIUC as the VMEbus Master CPU

After the procedure has finished all the necessary PROFIBUS modules are loaded and OS-9/NET on PROFIBUS is
started.

After power up on the PROFIBUS starter kit PB_2 a romable OS-9 is brought up and the OS-9/NET on PROFIBUS is
automatically started on this station.

The user has to login onto the system with:

User name?: super
Password: user

To test the PROFIBUS connection type in:

tmode nopause
ndir -ea /n1

The PROFIBUS nodes PB_1 and PB_2 are now connected to the network.

Now start a PROFIBUS application on your PROFIBUS nodes PB_1 and PB_2.

1st step: Start the PROFIBUS application on station PB_2 (= PROFIBUS station number 2).

Type in:

demo_S 1 10 (demo_S <remote_station> <sap>)

This application communicates with the remote PROFIBUS station 1 using Service Access Point 10 for the data
transfer. The application prepares a time string with the PROFIBUS service REPLY_UPDATE which is picked up from
the remote station when an SRD indication occurs. This SRD indication also contains data already sent from station 1.

2nd step: start the corresponding PROFIBUS application on station PB_1 (= PROFIBUS station number 1).

Type in:

demo_M 2 10 (demo_M <remote_station> <sap>)

Each second a time string is transfered to station 2 and at the same time data is picked up from the remote station.

Page 4-10 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.3 Intercommunication Interface

PEP’s layer 2 library implements two different ways to establish communications:

• The PROFIBUS library “pbl2hlf.l” uses a simplified structure to access the layer 2. The FDL-User does not have to
take care of memory management and needs only one function for request and conformation. These services do not
include cyclic services.

• The FDL interface library “pbl2llf.l” offers the complete functionality of layer 2. The user, however, has to take care
of the memory management and the more complex structure of the service calls.

The service parameters are formed into data blocks which are presented to the FDL, or are received from the FDL
accordingly. The necessary memory must be allocated by the FDL-User for these service parameters. In order to reduce
the memory requirements dynamic memory allocation is applied as and when required.

Since the individual FDL- and/or FMA1/2 services contain different quantities and structures of parameters, it stands
to reason that no single template can be applied to cover all possibilities. Therefore the parameters for any given
service are normally split into several interlinked sub-structures.

As many of the service routines are not executed immediately, but rather must wait for the correct MAC condition
(i.e. token receipt), it often occurs that the installed parameters for a given service routine are installed and remain in
the FDL and must be called back with a later service call. Special structures such as bus parameter blocks or
parameter blocks used to define the service call address remain in the FDL until layer 2 or the service call address is
deactivated.

The FDL also needs other resources in the form of input buffers and parameter blocks for the evaluation of the
incoming messages.

May 20, 1996 © 1995 PEP Modular Computers Page 4-11

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

4.4 PROFIBUS Library “pbl2hlf.l”

This library is a tool for the PROFIBUS user to simplify the use of PROFIBUS services. It provides functions to
transfer and receive data to and from a remote station as well as management functions to monitor the PROFIBUS.

The following functions are provided:

General Functions:

open_PROFI
close_PROFI

Data Handling Functions:

open_JOB (obsolete)
open_JOB_S
open_JOB_R_SDX
open_JOB_R_SRD
close_JOB
send_SDA
send_SDN
send_SRD
send_RPLUPD_S
send_RPLUPD_M
ready_IND
receive_IND
release_IND

Management Functions:

get_LAS
get_CTR
get_TRR
enable_EVENT
disable_EVENT

Page 4-12 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.4.1 General Functions

open_PROFI

Function:

The PROFIBUS device will be opened. The function determines the name of the PROFIBUS device by the name defined
in the data module busPB. The service FMA2_SET_BUSPARAMETER is executed, the values for the bus parameters
are determined by the entries in the busPB module. This function must be called before any other function can be used.

C Syntax:

USIGN32 open_PROFI ()

Return Values:

0 - 126: Station Number
-1: OS-9 system error. Error number is stored in the global variable errno

The following return parameters are valid as of Version 3.1 Index 1.3:

0 : no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

close_PROFI

Function:

The PROFIBUS device is closed again. This function should be called before the application terminates.

C Syntax:

USIGN32 close_PROFI ()

Return Values:

0 - 126: Station Number
-1: OS-9 system error. Error number is stored in the global variable errno

The following return parameters are valid as of Version 3.1 Index 1.3:

0 : no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

May 20, 1996 © 1995 PEP Modular Computers Page 4-13

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

4.4.2 Data Transfer Functions

To use data transfer functions the user has to prepare a structure called job descriptor JOB_DESCR where information are
exchanged between the user and the library functions. Depending on the used function the user has to prepare several
entries in the job descriptor and the library function returns information for the user in the job descriptor.

This structure of the job descriptor is defined in the file pbL2hlf.h.

/* Structure of JOB DESCRIPTOR */

typedef struct JOB_DESCR
{

USIGN8 job_id; /* job number */
USIGN8 remote_station; /* remote station */
USIGN8 service; /* service */
USIGN8 status; /* status */
USIGN8 ssap; /* source SAP */
USIGN8 dsap; /* destination SAP */
USIGN8 *send_buf; /* send buffer for SDA/SDN/SRD */

/* REPLY UPDATE */
USIGN8 send_len; /* buffer length */
USIGN8 send_class; /* priority of data send */
USIGN8 *rec_buf; /* receive buffer for SRD */
USIGN8 rec_len; /* buffer length */
USIGN8 nr_indbuf; /* number of indication buffer */
USIGN8 *ind_buf; /* indication buffer for */

/* SDA/SDN/SRD */
USIGN8 ind_len; /* buffer length */
USIGN8 ind_class; /* priority of indication data */

} JOB_DESCR;

Page 4-14 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

open_JOB (Obsolete)

Function:

A job is created for following data transfer actions. The user has to prepare a job descriptor JOB_DESCR for further
information exchange between the application and the library. The library activates two Service Access Points depending
on the value of ssap and prepares memory for further data transfer services. This function must be the called before any
data transfer function can be executed.

C Syntax:

#include <pbL2hlf.h>

USIGN32 open_JOB (JOB_DESCR *job_descr)
JOB_DESCR *job_desrc;

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value range
<<: Provided by Library

job_id >> 0...60
remote_station
service
status
ssap >> 0...60
dsap >> 0...60
*send_buf
send_len
send_class
*rec_buf
rec_len
nr_indbuf >> 0...9
*ind_buf
ind_len
ind_class

May 20, 1996 © 1995 PEP Modular Computers Page 4-15

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

job_id: The application is responsible to define the job_id number. If several jobs are created, the user has
to prepare multiple job descriptors with different job_id values.

ssap
dsap By opening a job the application is able to send data packets from a source SAP (Service Access

Point) to a destination SAP. Source SAP and destination SAP are defined when the job is created.
The value for both can be different.
Note: Internally the library uses two source SAPs (ssap and ssap+1) so the application has to take
care not to use both source SAPs multiple times in different jobs. The value for the receiving
station (remote_station) can be variable and defined at the time when the data transfer function is
called.

nr_indbuf The user has to define the number of buffers that should be provided for PROFIBUS to store
incoming indication data. If no indications are expected the value for nr_indbuf can be zero.

Page 4-16 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

open_JOB_S

Function:

A job is created for data transfer actions. The user has to prepare a job descriptor JOB_DESCR for further information
exchange between the application and the library. The library activates the Service Access Point depending on the value of
ssap and prepares memory for further data transfer services. This job can be used for SDA/SDN and SRD send requests
(send_SDA, send_SDN, send_SRD).

C Syntax:

#include <pbL2hlf.h>

USIGN32 open_JOB_S (JOB_DESCR *job_desrc)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value range
<<: Provided by Library

job_id >> 0..60
remote_station
service
status
ssap >> 0...60
dsap
*send_buf
send_len
send_class
*rec_buf
rec_len
nr_indbuf >> 0
*ind_buf
ind_len
ind_class

May 20, 1996 © 1995 PEP Modular Computers Page 4-17

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

job_id: The application is responsible to define the job_id number. If several jobs are created, the user has
to prepare multiple job descriptors with different job_id values.

ssap By opening a job the application is able to send data packets from a source SAP (Service Access
Point) to a destination SAP. The source SAP is defined when the job is created.
Note: The value for the receiving station (remote_station) and the destination SAP (dsap) can be
variable and defined at the time when the data transfer function is called.

nr_indbuf The value of nr_indbuf must be set to zero and no indication can arrive.

The main differences of this function in relation to the open_JOB function are listed below:

A job created with open_JOB can be used to send request and receive indications.

Sending a request:

send_SDA: ssap --> dsap
send_SDN: ssap --> dsap
send_SRD: ssap --> dsap
send_RPLUPS_S: ssap --> dsap
send_RPLUPD_M: ssap --> dsap

Receiving an indication:

SDA-indication: ssap
SDN-indication: ssap
SRD-indication: ssap

Page 4-18 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

open_JOB_R_SDX

Function:

A job is created to receive data transfer indications of a remote SDA or SDN request by a send_SDA or send_SDN
function call. The user has to prepare a job descriptor JOB_DESCR for further information exchange between the
application and the library. The library activates the Service Access Point depending on the value of ssap and prepares
memory for further data transfer services. This function must be the called before a data indication can be received on that
particular SAP.

C Syntax:

#include <pbL2hlf.h>

USIGN32 open_JOB_R_SDX (JOB_DESCR *job_desrc)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value range
<<: Provided by Library

job_id >> 0...60
remote_station
service
status
ssap >> 0...60
dsap
*send_buf
send_len
send_class
*rec_buf
rec_len
nr_indbuf >> 0...9
*ind_buf
ind_len
ind_class

May 20, 1996 © 1995 PEP Modular Computers Page 4-19

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

job_id: The application is responsible to define the job_id number. If several jobs are created, the user has
to prepare multiple job descriptors with different job_id values.

ssap By opening a job the application is able to receive data packets on a source SAP (Service Access
Point) from a destination SAP. Source SAP is defined when the job is created.

nr_indbuf The user has to define the number of buffers that should be provided for PROFIBUS to store
incoming indication data. If no indications are expected the value for nr_indbuf can be zero.

Page 4-20 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

open_JOB_R_SRD

Function:

A job is created for following data transfer actions. The user has to prepare a job descriptor JOB_DESCR for further
information exchange between the application and the library. The library activates the Service Access Point depending on
the value of ssap and prepares memory for further data transfer services. This function must be the called before data
transfer function send_RPLUPD_<x> can be sent or an indication can be received from a remote Initiator by a send_SRD
function call.

C Syntax:

#include <pbL2hlf.h>

USIGN32 open_JOB_R_SDX (JOB_DESCR *job_desrc)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value range
<<: Provided by Library

job_id >> 0...60
remote_station
service
status
ssap >> 0...60
dsap
*send_buf
send_len
send_class
*rec_buf
rec_len
nr_indbuf >> 0...9
*ind_buf
ind_len
ind_class

May 20, 1996 © 1995 PEP Modular Computers Page 4-21

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

job_id: The application is responsible to define the job_id number. If several jobs are created, the user has
to prepare multiple job descriptors with different job_id values.

ssap By opening a job the application is able to receive data packets by the send_RPLUPD_<x>
function call from a source SAP (Service Access Point) to a destination SAP and to receive data
packets by a SRD-indication, issued from a remote SRD-request (send_RPLUPD_<x>). Source
SAP is defined when the job is created.
Note: The value for the receiving station (remote_station) can be variable and defined at the time
when the data transfer is called.

nr_indbuf The user has to define the number of buffers that should be provided for PROFIBUS to store
incoming indication data. If no indications are expected the value for nr_indbuf can be zero.

Page 4-22 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

close_JOB

Function:

The job is closed. The library deactivates the source SAPs (two source SAPs if opened using open_JOB) and the job
descriptor is free again.

C Syntax:

#include <pbL2hlf.h>

USIGN32 close_JOB (USIGN8 job_id)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library

job_id remains unchanged
remote_station remains unchanged
service remains unchanged
status remains unchanged
ssap remains unchanged
dsap remains unchanged
*send_buf remains unchanged
send_len remains unchanged
send_class remains unchanged
*rec_buf remains unchanged
rec_len remains unchanged
nr_indbuf remains unchanged
*ind_buf remains unchanged
ind_len remains unchanged
ind_class remains unchanged

May 20, 1996 © 1995 PEP Modular Computers Page 4-23

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

send_SDA

Function:

A data packet is transfered to a destination defined by the destination SAP dsap and the station number remote_station.
For the data transfer the PROFIBUS service SDA is used. The library functions returns to the application, when the SDA
confirmation for that SDA request has been passed back from PROFIBUS layer.

C Syntax:

#include <pbL2hlf.h>

USIGN32 send_SDA (USIGN8 job_id)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library

job_id remains unchanged
remote_station >> 0...126
service
status
ssap remains unchanged
dsap remains unchanged or >> 0...60
*send_buf >> Pointer to send buffer
send_len >> 1...242
send_class >> HIGH or LOW
*rec_buf
rec_len
nr_indbuf remains unchanged
*ind_buf
ind_len
ind_class

dsap Job created by open_JOB: remains unchanged.
Job created by open_JOB_S: must be now defined and can be variable.

send_buf Note: The application has to prepare the send buffer. The real user data written to the send buffer
have to start at the 12th byte. Bytes 0- 11 are reserved for PROFIBUS and should not be touched.

send_len Length of real user data to send.

Note: This function can be used only on active stations

Page 4-24 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

send_SDN

Function:

A data packet is transfer to a destination defined by the destination SAP dsap and the station number remote_station.
For the data transfer the PROFIBUS service SDN is used. The library functions returns to the application, when the SDN
confirmation for that SDN request has been passed back from PROFIBUS layer.

C Syntax:

#include <pbL2hlf.h>

USIGN32 send_SDN (USIGN8 job_id)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library

job_id remains unchanged
remote_station >> 0...126, or global address 127
service
status
ssap remains unchanged
dsap remains unchanged or >> 0...60
*send_buf >> Pointer to send buffer
send_len >> 1...242
send_class >> HIGH or LOW
*rec_buf
rec_len
nr_indbuf remains unchanged
*ind_buf
ind_len
ind_class

dsap Job created by open_JOB: remains unchanged.
Job created by open_JOB_S: must be now defined and can be variable.

send_buf: Note: The application has to prepare the send buffer. The real user data written to the send buffer
have to start at the 12th byte. Bytes 0- 11 are reserved for PROFIBUS and should not be touched.

send_len Length of real user data to send.

Note: This function can be used only on active stations.

May 20, 1996 © 1995 PEP Modular Computers Page 4-25

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

send_SRD

Function:

A data packet is transfered to a destination defined by the destination SAP 'dsap' and the station number 'remote_station'.
If the destination has prepared data via the REPLY_UPDATE service these data are passed to the application. For the data
transfer the PROFIBUS service SRD is used. The library functions returns to the application, when the SRD
confirmation for that SRD request has been passed back from PROFIBUS layer.

C Syntax:

#include <pbL2hlf.h>

USIGN32 send_SRD (USIGN8 job_id)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library

job_id remains unchanged
remote_station >> 0...126
service
status
ssap remains unchanged
dsap remains unchanged or >> 0...60
*send_buf >> Pointer to send buffer
send_len >> 1...242
send_class >> HIGH or LOW
*rec_buf << Pointer to receive buffer
rec_len << 0...242
nr_indbuf remains unchanged
*ind_buf
ind_len
ind_class

dsap Job created by open_JOB: remains unchanged.
Job created by open_JOB_S: must be now defined and can be variable.

send_buf Note: The application has to prepare the send buffer. The real user data written to the send buffer
have to start at the 12th byte. Bytes 0- 11 are reserved for PROFIBUS and should not be touched.

send_len Length of real user data to send.

Page 4-26 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

rec_buf Points to the buffer where the received user data is located. This buffer is provided by the library and
can be overwritten by the next use of the send_SRD function.

rec_len Length of received user data.

Note: This function can be used only on active stations.

May 20, 1996 © 1995 PEP Modular Computers Page 4-27

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

send_RPLUPD_S

Function:

A data packet is transfered to a destination defined by the destination SAP dsap and the station number remote_station.
For the data transfer the PROFIBUS service REPLY_UPDATE in single mode is used. The library functions returns to
the application, when the request has been completed by the confirmation. The data is sent when an SRD request from a
remote station has been performed.

C Syntax:

#include <pbL2hlf.h>

USIGN32 send_RPLUPD_S (USIGN8 job_id)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library

job_id remains unchanged
remote_station >> 0...126
service
status
ssap remains unchanged
dsap remains unchanged or >> 0..60
*send_buf >> Pointer to send buffer
send_len >> 1...242
send_class >> HIGH or LOW
*rec_buf
rec_len
nr_indbuf remains unchanged
*ind_buf
ind_len
ind_class

dsap Job created by open_JOB: remains unchanged.
Job created by open_JOB_R_SRD: must be now defined and can be variable.

send_buf Note: The application has to prepare the send buffer. The real user data written to the send buffer
have to start at the 12th byte. Bytes 0- 11 are reserved for PROFIBUS and should not be touched.

send_len Length of real user data to send.

Page 4-28 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

send_RPLUPD_M

Function:

A data packet is transfered to a destination defined by the destination SAP dsap and the station number remote_station.
For the data transfer the PROFIBUS service REPLY_UPDATE in multiple mode is used. The library functions returns
to the application, when the request has been completed by the confirmation. The user is informed about the data transfer
by a SRD indication. The requested data remains available until it is overwritten, thus enabling a multiple readout of this
data with every SRD request from a remote station.

C Syntax:

#include <pbL2hlf.h>

USIGN32 send_RPLUPD_M (USIGN8 job_id)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Job Descriptor:

Entries >>: Prepared by Application Value Range
<<: Provided by Library

job_id remains unchanged
remote_station >> 0...126
service
status
ssap remains unchanged
dsap remains unchanged or >> 0...60
*send_buf >> Pointer to send buffer
send_len >> 1...242
send_class >> HIGH or LOW
*rec_buf
rec_len
nr_indbuf remains unchanged
*ind_buf
ind_len
ind_class

dsap Job created by open_JOB: remains unchanged.
Job created by open_JOB_R_SRD: must be now defined and can be variable.

send_buf Note: The application has to prepare the send buffer. The real user data written to the send buffer
have to start at the 12th byte. Bytes 0- 11 are reserved for PROFIBUS and should not be touched.

send_len Length of real user data to send.

May 20, 1996 © 1995 PEP Modular Computers Page 4-29

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

ready_IND

Function:

This function informs the user if any indication is available due to SDA, SDN or SRD requests from a remote station or
an EVENT indication if the function enable_EVENT has been used.

C Syntax:

#include <pbL2hlf.h>

USIGN32 ready_IND ()

Return Values:

0: no indication available
1: indication available
-1: OS-9 system error. Error number is stored in the global variable errno

receive_IND

Function:

Waits for an indication. This can be a SDA, SDN, SRD or EVENT indication. To get a SDA, SDN or SRD indication a
job has to be created via the functions open_JOB_S, open_JOB_R_SDX or open_JOB_R_SRD. An EVENT indication
can occur, if the function enable_EVENT has been executed. Using this function, the application is locked in the library
till an indication has occurred.

C Syntax:

#include <pbL2hlf.h>

USIGN32 receive_IND ()

Return Values:

0-60: job_id of corresponding job descriptor, where the information of an SDA, SDN or SRD indication is stored by
the library

255 an EVENT indication has occurred, a job descriptor is not relevant
-1: OS-9 system error. Error number is stored in the global variable errno

Page 4-30 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Job Descriptor (SDA, SDN or SRD Indication)

Entries >>: Prepared by Application Value Range
<<: provided by library

job_id remains unchanged
remote_station << 0...126, or global address 127
service << SDA, SDN, SRD
status << for SDA, SDN: OK

for SRD: NO, LO, HI
ssap remains unchanged
dsap remains unchanged
*send_buf
send_len
send_class
*rec_buf
rec_len
nr_indbuf remains unchanged
*ind_buf << pointer to indication buffer
ind_len << 1...242
ind_class << HIGH or LOW

remote_station Indicates from where the data has been send

service Determines the service type of the indication

status The status of the indication.
For status value explanations, please refer to Appendix A.

ind_buf Points to the buffer where the received user data are located. This buffer is provided by the library
and can be overwritten by the next use of the receive_IND function.

ind_len Length of received user data.

May 20, 1996 © 1995 PEP Modular Computers Page 4-31

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

release_IND

Function:

This function releases again the indication buffer, in order that the contents of the indication buffer can be overwritten
without further notice. Therefore the user has to read the buffer before he releases it. This function must be used after any
received SDA, SDN or SRD indication.

C Syntax:

#include <pbL2hlf.h>

USIGN32 release_IND (USIGN8 job_id)

Return Values:

 0: No error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Note: The application examples demo.c, demo_M.c and demo_S.c under the directory
/PROFINET/APPLIC/LAYER_2/SOURCE gives advice how to use the library functions for data transfer.

Page 4-32 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.4.3 Management Functions

The following functions provides information for the application in order to monitor the PROFIBUS protocol.

ge t_LAS

Function:

Returns the list of active stations on the PROFIBUS. The application has to prepare a 128-byte buffer. The pointer
to the buffer is passed to the library function, where the buffer is updated.

C Syntax:

#include <pbL2hlf.h>

USIGN32 get_LAS (USIGN8 *buffer)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Each entry of the buffer field reflects the status of the corresponding station number:

0x00: station is not active in the logical token ring
0x01: station is active in the logical token ring

Note: This function can be used only on active stations

May 20, 1996 © 1995 PEP Modular Computers Page 4-33

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

ge t_CTR

Function:

Returns statistic values. The application has to prepare a 4-long word buffer. The pointer to the buffer is passed to the
library function, where the buffer is updated.

C Syntax:

#include <pbL2hlf.h>

USIGN32 get_CTR (USIGN32 *buffer)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Each entry of the buffer field is updated with statistic information:

buffer[0]: number of sent telegrams
buffer[1]: number of repeated telegrams
buffer[2]: number of correct start delimiters
buffer[3]: number of defective start delimiters

Page 4-34 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

ge t_TRR

Function:

Returns the Real Target Rotation Time. The application has to prepare a 1-long word buffer. The pointer to the buffer is
passed to the library function, where the buffer is updated.

C Syntax:

#include <pbL2hlf.h>

USIGN32 get_TRR (USIGN32 *buffer)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

The buffer field is updated with the value of the Real Target Rotation Time.

Note: This function can be used only on active stations

May 20, 1996 © 1995 PEP Modular Computers Page 4-35

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

enable_EVENT

Function:

This function enables the receipt of FMA2 event or error indications. The application has to prepare a 1-byte buffer. The
pointer to the buffer is passed to the library function, where the buffer is updated when an FMA2 event occurs.

C Syntax:

#include <pbL2hlf.h>

USIGN32 enable_EVENT (USIGN8 *buffer)

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

The application has to use the function receive_IND to get informed when an EVENT indication occurs. The buffer is
then updated with the event or error status number.

Status Values:

0x01 (FMA2_FAULT_ADDRESS): Multiple FDL addresses
0x02 (FMA2_FAULT_TRANSCEIVER): Error in transmitter or receiver
0x03 (FMA2_FAULT_TTO): Bus timeout
0x04 (FMA2_FAULT_SYN): No receiving synchronization
0x05 (FMA2_FAULT_OUT_OF_RING): Active station has left the logical token ring
0x06 (FMA2_GAP_EVENT): A new station has been inserted into the GAP area

Page 4-36 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

disable_EVENT

Function:

This function disables again the receipt of FMA2 event or error indications.

C Syntax:

#include <pbL2hlf.h>

USIGN32 disable_EVENT ()

Return Values:

0: no error
-1: OS-9 system error. Error number is stored in the global variable errno
else: PROFIBUS status value. For status value explanations, refer to Appendix A.

Note: The application examples pbmon.c and pbwatch.c under the directory
/PROFINET/APPLIC/LAYER_2/SOURCE gives advice on how to use the management library functions.

An application program structure using the pbl2hlf.l library is shown overleaf.

May 20, 1996 © 1995 PEP Modular Computers Page 4-37

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

open_PROFIopen PROFIBUS
device

open_JOB
create JOB for
data transfer

send data
packet

send_SDA

open_PROFI open PROFIBUS
device

open_JOB create JOB for
data transfer

wait for
indication

receive_IND

application
dependent

interpet received
data packet

release indication
buffer

send_RPLUPD_S

send data and
get data

prepare data for nex
remote send_SRD

interpret
received data

wait for
indication

repeat

repeat

close data
transfer JOB

close_JOB close data
transfer JOB

close_PROFIclose PROFIBUS
device

close PROFIBUS
device

Application on Master Application on Master/Slave

BUS

SDA-data

no

yes

no

yes

send_SRD

release_IND

application
dependent

release_IND

receive_IND

interpet received
data packet

close_JOB

close_PROFI

release indication
buffer

application
dependent

SRD-data

RPLUPD_S-data

Page 4-38 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.5 FDL Interface Library “pbl2llf.l”

A standard OS-9 structure is used with manager, driver and descriptors to realize an interface between PROFIBUS layer 2
applications (FDL-User) and the PROFIBUS layer 2 protocol (FDL) itself. The user is able to setup FDL layer 2 services
via I/O-functions in the C language.

The C library pbL2llf.l is provided to ease the communication between the FDL-User and the FDL via the
PROFIBUS interface driver.

The communication is achieved via five interface functions:

fdl_open ()
fdl_req ()
fdl_con_ind ()
fdl_con_ind_poll()
fdl_close

4.5.1 Function fdl_open

int fdl_open
 (char * device_name)

Return Values
-1: error
0: OK

This function initializes the PROFIBUS device. It requires a pointer to the PROFIBUS device name (i.e /profi_1) and
must be used by the FDL-User before any communication with the FDL can take place.

4.5.2 Function fdl_req

int fdl_req
 (T_FDL_SERVICE_DESCR *sdb_ptr)

Return Values
-1: error
0: OK

This function is used to implement requests and provide the FDL with a pointer to the Service Description Block of type
T_FDL_SERVICE_DESCR which contains the occurring parameter and a pointer to the service specific parameter blocks
for any given service.

4.5.3 Function fdl_con_ind

T_FDL_SERVICE_DESCR * fdl_con_ind (void)

Return Values
-1: error
else: pointer to the Service Description Block

This function allows the FDL-User to distinguish between confirmation and indications. The result of this function
forms a pointer to the Service Description Block of type T_FDL_SERVICE_DESCR which contains the service variable
parameters and gives direction to the service specific parameter blocks. The function only returns to the application
program when a confirmation or indication arrives.

May 20, 1996 © 1995 PEP Modular Computers Page 4-39

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

4.5.4 Function fdl_con_ind_poll

T_FDL_SERVICE_DESCR * fdl_con_ind_poll (void)

This function allows the FDL-User to distinguish between confirmation and indications. The result of this function
forms a pointer to the Service Description Block of type T_FDL_SERVICE_DESCR which contains the service variable
parameters and gives direction to the service specific parameter blocks. If no confirmation or indication is available a
NULL-pointer is returned.

Return Values

-1: error
0: no confirmation or indication available
else: pointer to the Service Description Block

4.5.5 Function fdl_close

int fdl_close (void)

This function is used to terminate the communication to the FDL, leading to the PROFIBUS device being closed.

Return Values:

-1: error
0: OK

4.5.6 FDL Services

The FDL (Fieldbus Data Link) services are made available to the user via layer 2. The following data transfer services are
available:

• Send Data with Acknowledge (SDA)
• Send Data with No Acknowledge (SDN)
• Send and Request Data with Reply (SRD)
• Cyclic Send and Request Data with Reply (CSRD)

The services are realized by using a number of service primitives (denoted by FDL_...). To request a service the user
employs a Request primitive. A Confirmation primitive is returned to the user upon completion of the service, or in the
case of services with cyclic repetition, after every send/request cycle. If an unexpected event occurs at the remote station,
the Remote User is informed by an Indication primitive.

To simplify the overview of the intercommunication interface, some terms have been selected which differ slightly from
those in the normal specification.

A list of the FDL services as defined in DIN 19245, Part 1 follows below. On the right hand side two columns form
constants “service” and “primitive” as they must be given in the Service Description Block
(T_FDL_SERVICE_DESCR). These terms are agreed for use in the include data pbL2con.h

A deviation from the DIN 19245, Part 1 standard occurs with the CSRD service; according to standards, acknowledgment
of the first CSRD.confirmation is made after a CSRD.request has loaded a Poll-List. All further CSRD.confirmations
show the completion of each SRD cycle and therefore take on the character of a CSRD.confirmation but have a different
meaning than the first confirmation.

Thought has been given to this condition, and as soon as the Poll-List has been loaded (LOAD_POLL_LIST) and is
confirmed, CSRD.con is used thereafter to confirm the completion of individual poll cycles. A CSRD.req service does
not exist.

Page 4-40 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Terminology to DIN 19245, Part 1 Intercommunication Interface

Service Primitive Possible for

Send Data with Acknowledge (SDA)

FDL_DATA_ACK.request SDA REQ M
FDL_DATA_ACK.confirm SDA CON M
FDL_DATA_ACK.indication SDA IND M and S

Send Data with No Acknowledge (SDN)

FDL_DATA.request SDN REQ M
FDL_DATA.confirm SDN CON M
FDL_DATA.indication SDN IND M and S

Send and Request Data with Reply (SRD)

FDL_DATA_REPLY.request SRD REQ M
FDL_DATA_REPLY.confirm SRD CON M
FDL_DATA_REPLY.indication SRD IND M and S
FDL_REPLY_UPDATE.request REPLY_UPDATE REQ M and S
FDL_REPLY_UPDATE.confirm REPLY_UPDATE CON M and S

Cyclic Send and Request Data with Reply (CSRD)

FDL_SEND_UPDATE.request SEND_UPDATE REQ M
FDL_SEND_UPDATE.confirm SEND_UPDATE CON M
FDL_CYC_DATA_REPLY.request LOAD_POLL_LIST REQ M
FDL_CYC_DATA_REPLY.confirm (1st confirmation) LOAD_POLL_LIST CON M
FDL_CYC_DATA_REPLY.confirm (2nd upwards confirmation) CSRD CON M
FDL_CYC_ENTRY.request POLL_ENTRY REQ M
FDL_CYC_ENTRY.confirm POLL_ENTRY CON M
FDL_CYC_DEACT.request DEACT_POLL_LIST REQ M
FDL_CYC_DEACT.confirm DEACT_POLL_LIST CON M

M: Master
S: Slave

Brief descriptions of each of the data transfer services follow below with the following notation being used in the
Figures:

.req .request

.ind .indication

.con .confirmation

May 20, 1996 © 1995 PEP Modular Computers Page 4-41

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Send Data with Acknowledge (SDA)

This service allows a user of the FDL (Layer 2) in a Master station (referred to as a Local User), to send user data (SDA-
data) to a single remote station. At the remote station the SDA-data, if received error-free, is delivered by the FDL to the
user (referred to as a Remote User). The Local User receives a confirmation concerning the receipt or non-receipt of the
user data. If an error occurred during the transfer, the FDL of the Local User repeats the data transfer.

Figure 4.5.6.1: SDA Service

SDA.ind

(SDA-data)

Master/Slave
Station

Master
Station

SDA-data

Acknowledge

SDA.req

SDA.con

(SDA-data)

1 n

Send Data with No Acknowledge (SDN)

This service allows a Local User to transfer data (SDN-data) to a single remote station, to many remote stations
(Multicast), or to all remote stations (Broadcast) at the same time. The Local User receives a confirmation acknowledging
the end of the transfer, but not whether the data was duly received. At the remote stations this SDN-data, if received error-
free, is passed to the Remote User. There is no confirmation, however, that such a transfer has taken place.

Figure 4.5.6.2: SDN Service

SDN.ind

(SDN-data)

Master/Slave
Station

Master

Station

(SDN-data)SDN.req

SDN.con

(SDN-data)

1 2 3 4 n

Local
Acknowledge

Page 4-42 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Send and Request Data with Reply (SRD)

This service allows a Local User to transfer data (SRD-data) to a single remote station and at the same time to request
data (UPDATE-data) that was made available by the Remote User at an earlier time. At the remote station the received
SRD-data, if error-free, is passed to the Remote User. The service also allows a Local User to request data from the
Remote User without sending data (SRD-data=Null) to the Remote User.

The Local User receives either the requested data or an indication that the data was not available or a confirmation of the
non-receipt of the transmitted data. The first two reactions also confirm the receipt of the transfered data.

If an error occurs during the transfer, the FDL of the Local User repeats the data transfer with the data request.

Figure 4.5.6.3: SRD Service

SRD.ind

(with/without SRD-data)

Master/Slave
Station

Master

Station

SRD-data
SRD.req

SRD.con

(UPDATE-data) UPDATE.data

(with/without SRD-data)

n1

REPLY_UPDATE.req

(UPDATE-data)

REPLY_UPDATE.con

Cyclic Send and Request Data with Reply (CSRD)

This service allows a Local User to cyclically transfer data (S_UPDATE-data) to a remote station and at the same time to
request data (R_UPDATE-data) from the remote station. At the remote station the data received error-free is passed
cyclically to the Remote User. The service also allows a Local User to cyclically request data from the Remote User
without sending data to the Remote User.

The Local User cyclically receives either the requested data or an indication that the data was not available or a
confirmation of the non-receipt of the transmitted data. The first two reactions also confirm the receipt of the transfered
data.

If an error occurs during the transfer, the FDL of the Local User repeats the data transfer with the data request.

The selected remote stations and the number and sequence of the data transfers with data requests for the cyclic mode is
defined by the Local User in the Poll-List.

May 20, 1996 © 1995 PEP Modular Computers Page 4-43

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Figure 4.5.6.4 Start of CSRD Service

SRD.ind

Master/Slave
Station

Master
Station

POLL_ENTRY.req

POLL_ENTRY.con

REPLY_UPDATE.req

REPLY_UPDATE.con

CSRD.con

SEND_UPDATE.req

SEND_UPDATE.con

LOAD_POLL_LIST.req

LOAD_POLL_LIST.con

1 2

(S_UPDATE-data for 2)

SEND_UPDATE.req

SEND_UPDATE.con

(S_UPDATE-data for 3)

SEND_UPDATE.req

SEND_UPDATE.con

(S_UPDATE-data for n)

(unlock 2)

(S_UPDATE-data)

(R_UPDATE-data)

REPLY_UPDATE.req

REPLY_UPDATE.con

(R_UPDATE-data)

REPLY_UPDATE.req

REPLY_UPDATE.con

(R_UPDATE-data)

3

n

S_UPDATE-data f. 2

R_UPDATE-data

2

SRD.ind

POLL_ENTRY.req

POLL_ENTRY.con

CSRD.con

(unlock 3)

(S_UPDATE-data)

S_UPDATE-data f. 3

R_UPDATE-data

3

SRD.ind

POLL_ENTRY.req

POLL_ENTRY.con

CSRD.con

(unlock n)

(S_UPDATE-data)

S_UPDATE-data f. n

R_UPDATE-data

n

Page 4-44 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Figure 4.5.6.5 End of CSRD Service

SRD.ind

Master/Slave
Station

Master
Station

REPLY_UPDATE.req

REPLY_UPDATE.con

CSRD.con

SRD.ind

REPLY_UPDATE.req

REPLY_UPDATE.con

CSRD.con

SRD.ind

DEACT_POLL_LIST.req

DEACT_POLL_LIST.con

REPLY_UPDATE.req

REPLY_UPDATE.con

CSRD.con

SEND_UPDATE.req

SEND_UPDATE.con
.
.
.

3

n

1 2

A new poll list cycle

(S_UPDATE-data for 2)

(R_UPDATE-data)

(S_UPDATE-data)

S_UPDATE-data for 2

R_UPDATE-data

(R_UPDATE-data)

S_UPDATE-data for 3

R_UPDATE-data

S_UPDATE-data for n

R_UPDATE-data

(R_UPDATE-data)

(S_UPDATE-data)

(S_UPDATE-data)

Individual descriptions of the layer 2 services are now described on the following pages.

May 20, 1996 © 1995 PEP Modular Computers Page 4-45

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

SDA (Send Data with Acknowledge) Request

Description:

The local station sends data to a remote station (via rem_add) and awaits confirmation of a valid or errornous transfer.

Data Structure:

Service Description Block

Transmit/Receive Block

 descr_ptr

 send_data.buffer_ptr

Transmit Buffer

 11 Byte Header

 User Data

2 Byte Trailer

The FDL header and trailer in the transmit buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th
byte.

The three linked structures remain in the layer 2 until confirmation of successful or errornous transfer is returned by the
target station. Therefore the allocated memory cannot be used for anything else until this has been completed.

Service Description Block:

sap 0..62 or DEFAULT_SAP Local Service Access Point
service SDA
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SR_BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-46 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap 0..63 or DEFAULT_SAP Destination Service Access Point
rem_add.station 0..126 Remote station address
rem_add.segment 0..63 or NO_SEGMENT Remote segment address
serv_class LOW or HIGH Priority of the service call
update_status not significant
send_data.buffer_ptr (UNSIGN8 far*) Pointer to transmit buffer
send_data.length 1..242 Length of user data
receive_data.buffer_ptr not significant
receive_data.length not significant
resource.buffer_ptr not significant
resource.length not significant

May 20, 1996 © 1995 PEP Modular Computers Page 4-47

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

SDA (Send Data with Acknowledge) Confirmation

Description:

The remote station sends confirmation of a valid or errornous completion of an SDA request to the FDL-User (message
originator). If the confirmation cannot be sent due to local circumstances a negative status automatically occurs.

Data Structure:

Service Description Block

Transmit/Receive Block

Transmit Buffer

 descr_ptr

 send_data.buffer_ptr

 11 Byte Header

 User Data

 2 Byte Trailer

The data structure passed by the FDL request is returned to the FDL-User. The positive or negative confirmation of
successful transfer is given in the status field.

Service Description Block:

sap remains unchanged
service SDA
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, RR, RS, LS, NA, IV, NLT see below
descr_ptr remains unchanged Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap remains unchanged
rem_add.station remains unchanged
rem_add.segment remains unchanged
serv_class remains unchanged
update_status not significant
send_data.buffer_ptr remains unchanged Pointer to transmit buffer
send_data.length remains unchanged
receive_data.buffer_ptr not significant
receive_data.length not significant
resource.buffer_ptr not significant
resource.length not significant

Page 4-48 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Status Values:

Code Meaning
OK Positive confirmation that the service has been carried out
RR The partner did not have adequate operational resources
RS Partners service, access authorization or SAP, is not activated
LS Service or local Service Access Point not activated
NA Addressed partner does not respond
IV Invalid parameter in request

NLT Own station not in logical token ring

May 20, 1996 © 1995 PEP Modular Computers Page 4-49

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

SDA (Send Data with Acknowledge) Indication

Description:

The FDL indicates to the local station that data has been received as a result of an SDA request service initiated by a
remote service.

Data Structure:

Service Description Block

Transmit/Receive Block

Receive Buffer

 descr_ptr

 resouce.buffer_ptr

 receive_data.buffer_ptr

 FDL-Header

 User Data

 FDL-Trailer

The receive_data.buffer_ptr is used to point to the start of the valid user data. resource.buffer_ptr points to the start of the
buffer i.e. the resource transferred to the FDL via PUT_RESCRC_TO_FDL.

Service Description Block:

sap 0..63 or DEFAULT_SAP Destination Service Access Point (DSAP)
service SDA
primitive IND
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SR_BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-50 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station 0..126 Source station address
loc_add.segment 0..63 or NO_SEGMENT Source segment address
remote_sap 0..62 or DEFAULT_SAP Source Service Access Point (SSAP)
rem_add.station 0..126 Remote station address
rem_add.segment 0..63 or NO_SEGMENT Remote segment address
serv_class LOW or HIGH Priority of the service call
update_status not significant
send_data.buffer_ptr not significant
send_data.length not significant
receive_data.buffer_ptr (UNSIGN8 far*) Pointer to user data
receive_data.length 1..242 Length of received user data
resource.buffer_ptr (UNSIGN8 far*) Pointer to receive buffer
resource.length <= 255 Length of receive buffer

May 20, 1996 © 1995 PEP Modular Computers Page 4-51

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

SDN (Send Data with No Acknowledge) Request

Description:

The local station sends data to a group or all remote stations. The service is not confirmed by the recipients, but rather a
local “sent”receipt is generated.

Data Structure:

Service Description Block

Transmit/Receive Block

Transmit Buffer

 descr_ptr

 send_data.buffer_ptr

 11 Byte Header

 User Data

 2 Byte Trailer

The FDL header and trailer in the transmit buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th
byte.

The three linked structures remain in the layer 2 until confirmation. Therefore the allocated memory cannot be used for
anything else until this has been successfully completed.

Service Description Block:

sap 0..62 or DEFAULT_SAP Local Service Access Point
service SDN
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SR_BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-52 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap 0..63 or DEFAULT_SAP Destination Service Access Point
rem_add.station 0..126 or global address 127 Remote station address(es)
rem_add.segment 0..63 or NO_SEGMENT Remote segment address
serv_class LOW or HIGH Priority of the service call
update_status not significant
send_data.buffer_ptr (UNSIGN8 far*) Pointer to transmit buffer
send_data.length 1..242 Length of user data
receive_data.buffer_ptr not significant
receive_data.length not significant
resource.buffer_ptr not significant
resource.length not significant

May 20, 1996 © 1995 PEP Modular Computers Page 4-53

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

SDN (Send Data with No Acknowledge) Confirmation

Description:

The local station’s FDL generates confirmation if no errornous transfer messages are returned.

Data Structure:

Service Description Block

Transmit/Receive Block

Transmit Buffer

 descr_ptr

 send_data.buffer_ptr

 11 Byte Header

 User Data

 2 Byte Trailer

The data structures passed by the FDL request are returned to the FDL-User. The positive or negative confirmation is
shown in the status field.

Service Description Block:

sap remains unchanged
service SDN
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LS, IV, NLT
descr_ptr remains unchanged Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap remains unchanged
rem_add.station remains unchanged
rem_add.segment remains unchanged
serv_class remains unchanged
update_status not significant
send_data.buffer_ptr remains unchanged Pointer to transmit buffer
send_data.length remains unchanged Length of user data
receive_data.buffer_ptr not significant
receive_data.length not significant
resource.buffer_ptr not significant
resource.length not significant

Page 4-54 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Status Values:

Code Meaning
OK Positive confirmation that the service has been carried out
LS Service or local Service Access Point not activated
IV Invalid parameter in request

NLT Own station not in logical token ring

May 20, 1996 © 1995 PEP Modular Computers Page 4-55

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

SDN (Send Data with No Acknowledge) Indication

Description:

The FDL indicates that the local station has received data via an SDN request service initiated by a remote station.

Data Structure:

Service Description Block

Transmit/Receive Block

Receive Buffer

 descr_ptr

 resource.buffer_ptr

 receive_data.buffer_ptr

 FDL-Header

 User Data

 FDL-Trailer

The receive_data.buffer_ptr is used to point to the start of the valid user data. resource.buffer_ptr points to the start of the
buffer i.e. the resource to be transferred to the FDL via PUT_RESCRC_TO_FDL.

Service Description Block:

sap 0..63 or DEFAULT_SAP Destination Service Access Point (DSAP)
service SDN
primitive IND
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SR_BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Transmit/Receive Block:

loc_add.station 0..126 Source station address
loc_add.segment 0..63 or NO_SEGMENT Source segment address
remote_sap 0..62 or DEFAULT_SAP Source’s Service Access Point (SSAP)
rem_add.station 0..126 or global address 127 Remote station address
rem_add.segment 0..63 or NO_SEGMENT Remote segment address
serv_class LOW or HIGH Priority of the service call
update_status not significant
send_data.buffer_ptr not significant
send_data.length not significant
receive_data.buffer_ptr (UNSIGN8 far*) Pointer to user data
receive_data.length 1..242 Length of the received user data
resource.buffer_ptr (UNSIGN8 far*) Pointer to receive buffer
resource.length <= 255 Length of receive buffer

Page 4-56 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SRD (Send and Request Data with Reply) Request

Description:

The local station sends data to defined station(s) (via rem_add) and collects any data waiting there. If no data is present the
local station only receives a receipt.

Data Structure:

 resource.buffer_ptr

Receive Buffer

Service Description Block

Transmit/Receive Block

Transmit Buffer

 descr_ptr

 send_data.buffer_ptr

 11 Byte Header

 User Data (called)

 2 Byte Trailer

The FDL header and trailer in the transmit buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th
byte.

A receive buffer must be provided by the FDL-User via resource.buffer_ptr for any replied data.

Service Description Block:

sap 0..62 or DEFAULT_SAP Local Service Access Point
service SRD
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SR_BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-57

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap 0..62 or DEFAULT_SAP Destination Service Access Point
rem_add.station 0..126 Remote station address
rem_add.segment 0..63 or NO_SEGMENT Remote segment address
serv_class LOW or HIGH Priority of the service call
update_status not significant
send_data.buffer_ptr (UNSIGN8 far*) Pointer to transmit buffer
send_data.length 0..242 Length of user data
receive_data.buffer_ptr not significant
receive_data.length not significant
resource.buffer_ptr (UNSIGN8 far*) Pointer to reply buffer
resource.length <= 255 Length of reply buffer

Note: The data structures remain in level 2 and allocated memory cannot be used until completion of their task.

Page 4-58 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SRD (Send and Request Data with Reply) Confirmation

Description:

The confirmation of a valid or erranous completion of the SRD request returned and also indicates if any reply data is
available.

Data Structure:

 receive.data_buffer_ptr

 resource.buffer_ptr

Receive Buffer

Service Description Block

Transmit/Receive Block

Transmit Buffer

 descr_ptr

 send_data.buffer_ptr

 11 Byte Header

 User Data (called)

 2 Byte Trailer

 FDL-Header

 User Data (reply)

 FDL-Trailer

The data structures passed by the FDL request are returned to the FDL-User.

Service Description Block:

sap remains unchanged
service SRD
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status RS, LS, LR, NA, IV, DL, DH, NR,

RDL, RDH, RR, NLT
descr_ptr remains unchanged Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-59

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap remains unchanged
rem_add.station remains unchanged
rem_add.segment remains unchanged
serv_class remains unchanged
update_status not significant
send_data.buffer_ptr remains unchanged Pointer to transmit buffer
send_data.length remains unchanged
receive_data.buffer_ptr (USIGN8 far *) Pointer to reply data buffer
receive_data.length 0..242 Length of reply data
resource.buffer_ptr remains unchanged Pointer to reply telegram
resource.length remains unchanged Length of reply telegram

Status Values:

Code Meaning
RS Partners service, access authorization or SAP, is not activated
LS Service or local Service Access Point not activated
LR None or insufficient operational resources are available locally
NA Addressed partner does not respond
IV Invalid parameter in request
DL Reply data low available, positive conformation of data sent
DH Reply data high available, positive conformation of data sent
NR No reply data available, positive conformation of data sent

RDL Reply data low available, negative conformation of data sent
RDH Reply data high available, negative conformation of data sent
RR The partner did not have adequate operational resources
NLT Own station not in logical token ring

Page 4-60 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SRD (Send and Request Data with Reply) Indication

Description:

The FDL indicates that another station has completed an SRD cycle with the local station. If the Responder-SAP is
defined as ‘indication_mode==DATA’ (see service FMA2_ACTIVATE_RSAP) only SRD cycles where data has been
transferred, either with the receipt or the reply telegram, are indicated. If the Responder-SAP is defined as
‘indication_mode== ALL’, the SRD cycles without data are also indicated.

Data Structure:

Service Description Block

Transmit/Receive Block

Receive Buffer

 descr_ptr

 resource.buffer_ptr

 receive_data.buffer_ptr

 FDL-Header

 User Data

 FDL-Trailer

The receive_data.buffer_ptr is used to point to the start of the valid user data. resource.buffer_ptr points to the start of the
buffer i.e. the resource to be transferred to the FDL via PUT_RESCRC_TO_FDL.

Service Description Block:

sap 0..62 or DEFAULT_SAP Destination Service Access Point (DSAP)
service SRD
primitive IND
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SR_BLOCK far *) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-61

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Transmit/Receive Block:

loc_add.station 0..126 Source station address
loc_add.segment 0..63 or NO_SEGMENT Source segment address
remote_sap 0..62 or DEFAULT_SAP Source Service Access Point (SSAP)
rem_add.station 0..126 Remote station address
rem_add.segment 0..63 or NO_SEGMENT Remote segment address
serv_class LOW or HIGH Priority of the service call
update_status NO, LO, HI Status of the reply data sent
send_data.buffer_ptr not significant
send_data.length not significant
receive_data.buffer_ptr (UNSIGN8 far *) Pointer to user data
receive_data.length 0..242 Length of the received user data
resource.buffer_ptr (UNSIGN8 far *) Pointer to receiver buffer
resource.length <= 255 Length of receiver buffer

Page 4-62 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

REPLY_UPDATE Request

Description:

This primitive is used by the FDL-User to transfer data to a Service Access Point that was activated by the service
FMA2_ACTIVATE_RSAP. The data can be collected by another participant with either an SRD or CSRD service call.
This transfer can be either singular (transmit = SINGLE) or multiple (transmit = MULTIPLE) as desired. The
confirmation of transfer occurs with the next SRD.ind.

Data Structure:

Service Description Block

Update Block

Update Buffer

 descr_ptr

 upd_data.buffer_ptr

 11 Byte Header

 User Data

 2 Byte Trailer

The FDL header and trailer in the update buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th
byte.

The Service Description Block and the update block remain in the FDL until the respective confirmation of successful or
errornous transfer is completed. The update buffer is returned only with the confirmation of the next update call and must
remain available for the FDL until the next update request.

Service Description Block:

sap 0..62 or DEFAULT_SAP Local Service Access Point
service REPLY__UPDATE
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_UPDATE_BLOCK far *) Pointer to update block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-63

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Update Block:

dsap 0..62 or DEFAULT_SAP Destination Service Access Point
rem_add.station 0..126 Remote station address
rem_add.segment 0..63 or NO_SEGMENT Remote segment address
serv_class LOW or HIGH Priority of the service call
transmit SINGLE or MULTIPLE
upd_data.buffer_ptr (UNSIGN8 far *) Pointer to update buffer
upd_data.length 1..242 Length of user data

Page 4-64 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

REPLY_UPDATE Confirmation

Description:

The FDL confirms acceptance of the update buffer. If the confirmation is positive, the update buffer remains in the FDL
until the following UPDATE.req, returning no buffer for the first UPDATE.con. Hence UPDATE.con n always returns
the update buffer of the UPDATE.req n-1.
The confirmation of a successful transfer of the update buffer contents is indicated with a SRD.ind.

Data Structure:

Service Description Block

Update Block

Update Buffer No. n-1

 descr_ptr

 upd_data.buffer_ptr

 11 Byte Header

 User Data

 2 Byte Trailer

If the status is OK, the parameter upd_data.buffer_ptr returns the value NULL (zero) for the first confirmation.
Subsequent confirmations return the update buffer, which was sent to the FDL with the preceding UPDATE.req (n-1).

Service Description Block:

sap remains unchanged
service REPLY_UPDATE
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LS, LR, IV see below
descr_ptr remains unchanged Pointer to update block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Update Block:

dsap remains unchanged
rem_add.station remains unchanged
rem_add.segment remains unchanged
serv_class remains unchanged
transmit remains unchanged
upd_data.buffer_ptr (UNSIGN8 far *) Pointer to update buffer of call n-1
upd_data.length 1..242

May 20, 1996 © 1995 PEP Modular Computers Page 4-65

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Status Values:

Code Meaning
OK Update buffer has been accepted
LS Service Access Point not activated
LR During SINGLE, no transfer since previous update buffer has not been

sent
IV Invalid parameter in request

Page 4-66 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SEND_UPDATE Request

Description:

With this service the FDL-User can pass data to the Poll-List ‘administration’ of the FDL. The Poll-List entry is
determined by the rem_add and dsap combination. The data is transferred using an SRD cycle when the respective Poll-
List entry is handled, either as a single (transmit = SINGLE) or as a multiple (transmit = MULTIPLE) transfer.
Confirmation of the transfer occurs with a CSRD.con.

Data Structure:

Service Description Block

Update Block

Update Buffer

 descr_ptr

 upd_data.buffer_ptr

 11 Byte Header

 User Data

 2 Byte Trailer

The FDL header and trailer in the update buffer are automatically created by the FDL and sufficient memory for these
additions must be made available by the FDL-User. The data may be written to the transmit buffer starting at the 12th
byte.

The Service Description Block and the update block remain in the FDL until the respective confirmation of successful or
errornous transfer is completed. The update buffer is returned only with the confirmation of the next update call and must
remain available for the FDL until the next update request.

Service Description Block:

sap 0..62 or DEFAULT_SAP Service Access Point of Poll-List (Poll-SAP)
service SEND__UPDATE
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_UPDATE_BLOCK far *) Pointer to update block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-67

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Update Block:

dsap 0..62 or DEFAULT_SAP
rem_add.station 0..126 Remote station address
rem_add.segment 0..63 or NO_SEGMENT Remote segment address
serv_class LOW or HIGH Priority of the service call
transmit SINGLE or MULTIPLE
upd_data.buffer_ptr (UNSIGN8 far *) Pointer to update buffer
upd_data.length 1..242 Length of user data

Page 4-68 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SEND_UPDATE Confirmation

Description:

The FDL confirms acceptance of the update buffer into the Poll-List designated with the rem_add/dsap combination. If the
confirmation is positive, the update buffer remains in the FDL until the following UPDATE.req, returning no buffer for
the first UPDATE.con. Hence UPDATE.con n always returns the update buffer of the UPDATE.req n-1.

The confirmation of a successful transfer of the update buffer contents is indicated with a CSRD.con.

Data Structure:

Service Description Block

Update Block

Update Buffer No. n-1

 descr_ptr

 upd_data.buffer_ptr

 11 Byte Header

 User Data

 2 Byte Trailer

If the status is OK, the parameter “upd_data.buffer_ptr” returns the value NULL (zero) for the first confirmation.
Subsequent confirmations return the update buffer, which was sent to the FDL with the preceding UPDATE.req (n-1).

Service Description Block:

sap remains unchanged
service SEND_UPDATE
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LS, LR, IV see below
descr_ptr remains unchanged Pointer to update block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Update Block:

dsap remains unchanged
rem_add.station remains unchanged
rem_add.segment remains unchanged
serv_class remains unchanged
transmit remains unchanged
upd_data.buffer_ptr (UNSIGN8 far *) Pointer to update buffer of call n-1
upd_data.length 1..242

May 20, 1996 © 1995 PEP Modular Computers Page 4-69

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Status Values:

Code Meaning
OK Update buffer has been accepted
LS Service Access Point not activated
LR rem_add/dsap combination not found in the Poll-List. During

SINGLE, no transfer since previous update buffer has not been sent
IV Invalid parameter in request

Page 4-70 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

LOAD_POLL_LIST Request

Description:

With this service the Poll-List is given to the FDL-User.

Data Structure:

Service Description Block

Poll List Descriptor

Poll List Elements
Pointers Field

 descr_ptr

 len
 elem_ptr

Poll List Elements

The Service Description Block contains a pointer to the Poll-List descriptor, which contain details about the number and
location of the pointer fields. The length of the pointer field must exactly represent the number of Poll-List entries
required. Every entry must point to a Poll-List element which in turn will contain administrative information required for
the transfer.

The pointer field represents the Poll-List according to the DIN 19245 standard. This is because the priority of the Poll-
List elements can be manipulated by multiple entries in the pointer field to the same Poll-List element and the
arrangement of the pointer in the pointer field allows a determination of the execution sequence.

Service Description Block:

sap 0..62 Service Access Point of Poll-List (Poll-SAP)
service LOAD_POLL_LIST
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_POLL_LIST_DESCR far *) Pointer to Poll-List descriptor
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Poll List Descriptor:

len >0 Number of Poll-List entries
confirm_mode ALL or DATA ALL: all SRD cycles are confirmed by CSRD-

confirmation
DATA: Only SRD cycles with user data are confirmed

elem_ptr (T_POLL_LIST_ELEM_PTR far *) Pointer to pointer field

Pointer Field:

T_POLL_LIST_ELEM_PTR [quantity of Poll-List entries]

May 20, 1996 © 1995 PEP Modular Computers Page 4-71

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Poll-List Elements:

dsap 0..62 or DEFAULT_SAP Destination Service Access Point
rem_add.station 0..126
rem_add.segment 0..63 or NO_SEGMENT
max_len_csrd_req_low 0..242 Maximum length of request (low)
max_len_csrd_con_low 0..242 Maximum length of reply data (low)
max_len_csrd_con_high 0..242 Maximum length of reply data (high)
poll_buffer.buffer_ptr (UNSIGN8 far *) Pointer to buffer for poll telegrams
poll_buffer.length > = FDL_OFFSET+FDL_TRAILER Length of buffer
send_data not significant
resrc_hdr not significant
resrc_tail not significant
resrc_ctr not significant
transmit reserved for FDL
to_send reserved for FDL
marker reserved for FDL
poll_telegram reserved for FDL
data_telegram reserved for FDL
data_fcs reserved for FDL
poll_fcs reserved for FDL

Note: Multiple entries in the Poll-List are achieved by including more than one entry in the Pointers Field to the same
Poll-List element.

Page 4-72 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

LOAD_POLL_LIST Confirmation

Description:

The FDL confirms acceptance of the Poll-List or rejects the Poll-List with an error status.

Data Structure:

Service Description Block

 descr_ptr

If the status is OK, only the Service Description Block is returned, otherwise the entire structure transfered with the
request is returned indicating an error.

Service Description Block:

sap 0..62 Service Access Point for Poll-List (Poll-SAP)
service LOAD_POLL_LIST
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, NO, IV see below
descr_ptr NULL (= zero) By error remains unchanged
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Note: Value of descr_ptr: When status = OK this counter is reset to 0, otherwise it points to the Poll-List descriptor
given with the request.

Status Values:

Code Meaning
OK The Poll-List has been accepted by the FDL
NO The FDL already contains a Poll-List
IV Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-73

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Cyclic Send and Request Data with Reply (CSRD) Confirmation

Description:

This primitive indicates to the FDL that an SRD cycle is being processed with the Poll-List and the status is returned for
any eventually received reply data. Subject to the value of the “confirm_mode” parameter as loaded into the Poll-List
descriptor, all SRD cycles (confirm_mode = ALL) are indicated to the FDL-User or only the SRC cycles are indicated that
contain user data either in the sent or in the receipt telegram or in both (confirm_mode = DATA).

Data Structure:

Service Description Block

Transmit/Receive Block

Receive Buffer

 descr_ptr

 resource.buffer_ptr

 receive_data.buffer_ptr

 FDL-Header

 User Data

 FDL-Trailer

The receive_data.buffer_ptr is used to point to the start of the valid user data. resource.buffer_ptr points to the start of the
buffer i.e. the resource to be transferred to the FDL via PUT_RESCRC_TO_FDL.

Service Description Block:

sap 0..62 or DEFAULT_SAP Service Access Point (SAP) of Poll-List
service CSRD
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status RS, LS, LR, NA, IV, NLT

DL, DH, NR, RDL, RDH, RR see below
descr_ptr (T_FDL_SR_BLOCK far *) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-74 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station 0..126 Local station address
loc_add.segment 0..63 or NO_SEGMENT Local segment address
remote_sap 0..62 or DEFAULT_SAP Partner’s Service Access Point (SAP)
rem_add.station 0..126 Remote station address
rem_add.segment 0..63 or NO_SEGMENT Remote segment address
serv_class LOW or HIGH Priority of the service call
update_status NO, LO Status of the calling data sent
send_data.buffer_ptr not significant
send_data.length not significant
receive_data.buffer_ptr (UNSIGN8 far *) Pointer to user data
receive_data.length 1..242 Length of the received user data

resource.buffer_ptr (UNSIGN8 far *) Pointer to receiver buffer
resource.length <= 255 Length of receiver buffer

Status Values:

Code Meaning
RS Partners service, access authorization or SAP, is not activated
LS Service or local Service Access Point not activated
LR None or insufficient operational resources are available locally
NA Addressed partner does not respond
IV Invalid parameter in request
DL Reply data low available, positive conformation of data sent
DH Reply data high available, positive conformation of data sent
NR No reply data available, positive conformation of data sent

RDL Reply data low available, negative conformation of data sent
RDH Reply data high available, negative conformation of data sent
RR The partner did not have adequate operational resources
NLT Own station not in logical token ring

May 20, 1996 © 1995 PEP Modular Computers Page 4-75

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

POLL_ENTRY Request

Description:

Through the given rem_add/dsap combination, a specific entry in the Poll-List is marked as either available or barred by
the value of the “marker” parameter of the poll entry block. Thus it is possible to temporarily deactivate an entry in the
Poll-List, and save the partner having to poll it along with the currently desired entries.

Data Structure:

Service Description Block

Poll Entry Block

 descr_ptr

Service Description Block:

sap 0..62 or DEFAULT_SAP Service Access Point of Poll-List (Poll-SAP)
service POLL_ENTRY
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_POLL_ENTRY far *) Pointer to poll entry block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Poll Entry Block:

dsap 0..62 or DEFAULT_SAP Service Access Point of the partner
rem_add.station 0..126 Station address of the partner
rem_add.segment 0..63 or NO_SEGMENT Segment address of the partner
marker LOCKED or UNLOCKED New state of the entry

Page 4-76 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

POLL_ENTRY Confirmation

Description:

The availability or barred state of a Poll-List entry is confirmed.

Data Structure:

Service Description Block

Poll Entry Block

 descr_ptr

Service Description Block:

sap remains unchanged Service Access Point of Poll-List (Poll-SAP)
service POLL_ENTRY
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LS, NO, IV see below
descr_ptr (T_POLL_ENTRY far *) Pointer to poll entry block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Poll Entry Blocks:

dsap remains unchanged Partner’s Service Access Point
rem_add.station remains unchanged Station address of the partner
rem_add.segment remains unchanged Segment address of the partner
marker remains unchanged New state of the entry

Status Values:

Code Meaning
OK Marker set
LS No Poll-List exists in the FDL at this Service Access Point
NO Marker not set, rem_add/dsap combination not found in the Poll-List
IV Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-77

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

DEACT_POLL_LIST Request

Description:

The processing of the Poll-List is terminated after completion of the current activity.

Data Structure:

Service Description Block

 descr_ptr

It only remains to complete the Service Description Block.

Service Description Block:

sap 0..62 or DEFAULT_SAP Service Access Point for Poll-List (Poll-SAP)
service DEACT_POLL_LIST
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr not significant
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-78 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

DEACT_POLL_LIST Confirmation

Description:

The deactivation of the Poll-List is confirmed and if status = “OK” the Poll-List is given back to the FDL-User.

Data Structure:

Service Description Block

Poll List Descriptor

Poll List Elements
Pointers Field

 descr_ptr

 len
 elem_ptr

Poll List Elements

The structure of the Poll-List is identical to the structure given over during the LOAD_POLL_LIST.request. In the Poll-
List elements under the resc_ctr, the number of resources allocated to the respective elements are given.

The resource resc_tail points to the linked resources, and the send_data contains the last update buffer.

Service Description Block:

sap remains unchanged Service Access Point of Poll-List (Poll-SAP)
service DEACT_POLL_LIST
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LS or IV see below
descr_ptr (T_POLL_LIST_DESCR far *) Pointer to Poll-List descriptor
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK Poll-List is disabled
LS The specified Service Access Point does not have a Poll-List in the FDL
IV Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-79

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

4.5.7 FMA Services

The FMA (Fieldbus Management) services are made available through the management (FMA1/2) associated with the
layers 1 and 2. A list of the FMA1/2 services as defined in DIN 19245, Part 1 follows below. On the right hand side two
columns form constants “service” and “primitive” as they must be given in the Service Description Block
(T_FDL_SERVICE_DESCR). These terms are agreed for use in the include-data “pbL2con.h”.

The services FMA1/2_SET_VALUE and FMA1/2_READ_VALUE are created by multiple intercommunication services,
due to their many varied parameter structures.

Terminology to DIN 19245, Part 1 Intercommunication Interface

Service Primitive Possible for

Reset FMA1/2

FMA1/2_RESET.request FMA2_RESET REQ M and S
FMA1/2_RESET.confirm FMA2_RESET CON M and S

Set Value FMA1/2

FMA1/2_SET_VALUE.request
FMA1/2_SET_VALUE.confirm

FMA2_SET_BUSPARAMETER REQ M and S
FMA2_SET_BUSPARAMETER CON M and S

FMA2_SET_STATISTIC_CTR REQ M and S
FMA2_SET_STATISTIC_CTR CON M and S

FMA2_CHANGE_BUSPARAMETER REQ M and S
FMA2_CHANGE_BUSPARAMETER CON M and S

Read Value FMA1/2

FMA1/2_READ_VALUE.request
FMA1/2_READ_VALUE.confirm

FMA2_READ_BUSPARAMETER REQ M and S
FMA2_READ_BUSPARAMETER CON M and S

FMA2_READ_STATISTIC_CTR REQ M and S
FMA2_READ_STATISTIC_CTR CON M and S

FMA2_READ_TRR REQ M
FMA2_READ_TRR CON M

FMA2_READ_LAS REQ M
FMA2_READ_LAS CON M

FMA2_READ_GAPLIST REQ M
FMA2_READ_GAPLIST CON M

Page 4-80 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Event FMA1/2

FMA1/2_EVENT.indication FMA2_EVENT IND M and S

Ident FMA1/2

FMA1/2_IDENT.request FMA2_LSAP_STATUS REQ local: M and S
remote : M

FMA1/2_IDENT.confirm FMA2_LSAP_STATUS CON local: M and S
remote: M

LSAP FMA1/2

FMA1/2_LSAP_STATUS.request FMA2_IDENT REQ local: M and S
remote: M

FMA1/2_LSAP_STATUS.confirm FMA2_IDENT CON local:M and S
remote: M

Live-List FMA1/2

FMA1/2_LIVE_LIST.request FMA2_LIVELIST REQ M
FMA1/2_LIVE_LIST.confirm FMA2_LIVELIST CON M

SAP Activate FMA1/2

FMA1/2_SAP_ACTIVATE.request FMA2_ACTIVATE_SAP REQ M and S
FMA1/2_SAP_ACTIVATE.confirm FMA2_ACTIVATE_SAP CON M and S

SAP Activate FMA1/2

FMA1/2_RSAP_ACTIVATE.request FMA2_ACTIVATE_RSAP REQ M and S
FMA1/2_RSAP_ACTIVATE.confirm FMA2_ACTIVATE_RSAP CON M and S

SAP Deactivate FMA1/2

FMA1/2_SAP_DEACTIVATE.request FMA2_DEACTIVATE_SAP REQ M and S
FMA1/2_SAP_DEACTIVATE.confirm FMA2_DEACTIVATE_SAP CON M and S

M: Master, active station
S: Slave, passive station

Individual descriptions of the above are given in the same order on the following pages.

May 20, 1996 © 1995 PEP Modular Computers Page 4-81

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_RESET Request

Description:

The FLC and MAC sub-layers are reinitialized. All information previously contained in FLC and MAC is lost. All data
structures of the FDL-user that were contained in the FDL at the time of the reset are also lost, and the user must restore
them himself.

The FDL waits for bus parameters after a FMA2_RESET. It also waits for bus parameters after the start of layer 2
software. Once these bus parameters are set the MAC runs and other services can be undertaken.

Important: After the FMA2_RESET a FMA2_SET_BUSPARAMETER must be sent. No other services can be
accepted until this has taken place.

If several PROFIBUS application tasks are running, using this service will affect all PROFIBUS applications.

Data Structure:

Service Description Block

 descr_ptr

Service Description Block:

sap MSAP_0 Local Service Access Point
service FMA2_RESET
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr not significant
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-82 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_RESET Confirmation

Description:

It is confirmed that the FDL has been reset.

Data Structure:

Service Description Block

 descr_ptr

Service Description Block:

sap remains unchanged
service FMA2_RESET
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK or IV see below
descr_ptr not significant
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
IV Invalid parameter in request

Note: An invalid SAP will also return ‘IV’ as the status.

May 20, 1996 © 1995 PEP Modular Computers Page 4-83

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_SET_BUSPARAMETER Request

Important: This service call must be carried out after start of layer 2 software and after every FMA2_RESET.

Description:

The FDL-User sends the operational parameters to the FDL. The parameters HSA, ident and in_ring_desired are taken
over after the layer 2 software starts and after every FMA2_RESET, and cannot be altered once in service.

If the bus parameters are set using the FMA2_SET_BUSPARAMETER service, further changes can be made using the
FMA2_CHANGE_BUSPARAMETER service.

Data Structure:

Service Description Block

Bus Parameter Block

Identity Field

 descr_ptr

 ident

All bus parameters must be transferred in the form of a bus parameter block. Since the FDL makes a copy and returns the
original to the FDL-User, individual changes can be made to the original and the FDL be informed via the
FMA2_CHANGE_BUSPARAMETER service call.

Service Description Block:

sap MSAP_0
service FMA2_SET_BUSPARAMETER
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_BUSPAR_BLOCK far*) Pointer to bus parameter block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-84 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Bus Parameter Block:

loc_add.station 0..126 Own station address
loc_add.segment 0..63 or NO_SEGMENT Own segment address
baud_rate K_BAUD_9_6, or

K_BAUD_19_2, or
K_BAUD_93_75, or
K_BAUD_187_5, or
K_BAUD_500

medium_red NO_REDUNDANCY or REDUNDANCY
tsl 1..65535 Slot time
min_tsdr 1..65535 Minimum station delay time
max_tsdr 1..65535 Maximum station delay time
tqui 0..255 Modulator decouple time
tset 1..255 Exposure time (set up)
ttr 1..224-1 Target rotation time
g 1..100 GAP update factor
in_ring_desired TRUE or FALSE Desired participation in token ring
hsa 2..126 Highest station address (in local segment)
max_retry_limit 1..8 Max retrys in event of error
ident (UNSIGN8 far*) Pointer to identity field
ind_buf_len 0, 1-255 0 = token brake not active, otherwise it is active

Identity Field:

The identity field supplied by the FDL-User must contain the following “C” structure:

UNSIGN8 Length vendor_name
UNSIGN8 Length controller_type
UNSIGN8 Length HW_release
UNSIGN8 Length SW_release
char[ident_size] ASCII character string

ident_size must be at least equal to the sum of the previous four parts, but cannot exceed 238 bytes.

Note: All times are given as bit times.

The recommended parameter values for various baud rates is shown below:

Baud Rate 9 . 6 1 9 . 2 9 3 . 7 5 1 8 7 . 5 5 0 0

tsl 100 200 500 1500 3500
min_tsdr 30 60 125 250 500
max_tsdr 50 100 250 500 1000
tqui 0 0 0 0 0
tset 5 10 15 25 50
ttr 10000 15000 30000 50000 100000
g 1 1 1 1 1

The target rotation time (ttr) depends upon the actual load and number of connected stations.Too small a value should not
be chosen for the sake of efficiency.

Layer 2 demands on the processor can be reduced by using a large slot time and a small GAP factor. This will ensure that
not much time is wasted waiting for responses from busy or non-available partners.

The participant is passive when the in_ring_desired is set to FALSE.

May 20, 1996 © 1995 PEP Modular Computers Page 4-85

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_SET_BUSPARAMETER Confirmation

Description:

The acceptance of the bus parameters are confirmed or, if errornous (invalid parameters, etc.), denied.

Data Structure:

Service Description Block

Bus Parameter Block

Identity Field

 descr_ptr

 ident

The bus parameter block is returned to the FDL-User. The FDL keeps a copy of the data. It is recommended that the
FDL-User retains the bus parameter block for any minor changes needed later.

Service Description Block:

sap remains unchanged
service FMA2_SET_BUSPARAMETER
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, IV or LR see below
descr_ptr remains unchanged Pointer to bus parameter block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
IV Invalid parameter in request
LR Bus parameters have already been set using a previous

FMA2_SET_BUSPARAMETER service

Page 4-86 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_CHANGE_BUSPARAMETER Request

Important: This service call can be carried out after a FMA2_SET_BUSPARAMETER service.

Description:

The FDL-User sends the operational parameters to the FDL. The parameters HSA, ident and in_ring_desired are taken
over after the layer 2 software starts and after every FMA2_RESET, and cannot be altered once in service.

After every call for FMA2_CHANGE_BUSPARAMETER, the MAC leaves the logical token ring and takes up an active
or passive idle mode according to the in_ring_desired parameter.

Data Structure:

Service Description Block

Bus Parameter Block

Identity Field

 descr_ptr

 ident

All bus parameters must be transferred in the form of a bus parameter block. Since the FDL makes a copy and returns the
original to the FDL-User, individual changes can be made to the original and the FDL be informed via the
FMA2_CHANGE_BUSPARAMETER service call.

Service Description Block:

sap MSAP_0
service FMA2_CHANGE_BUSPARAMETER
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_BUSPAR_BLOCK far*) Pointer to bus parameter block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-87

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Bus Parameter Block:

loc_add.station 0..126 Own station address
loc_add.segment 0..63 or NO_SEGMENT Own segment address
baud_rate K_BAUD_9_6, or

K_BAUD_19_2, or
K_BAUD_93_75, or
K_BAUD_187_5, or
K_BAUD_500

medium_red NO_REDUNDANCY or REDUNDANCY
tsl 1..65535 Slot time
min_tsdr 1..65535 Minimum station delay time
max_tsdr 1..65535 Maximum station delay time
tqui 0..255 Modulator decouple time
tset 1..255 Exposure time (set up)
ttr 1..224-1 Target rotation time
g 1..100 GAP update factor
in_ring_desired TRUE or FALSE Desired participation in token ring
hsa 2..126 Highest station address (in local segment)
max_retry_limit 1..8 Max retrys in event of error
ident (UNSIGN8 far*) Pointer to identity field
ind_buf_len 0, 1-255 0 = token brake not active, otherwise it is active

Identity Field:

The identity field supplied by the FDL-User must contain the following “C” structure:

UNSIGN8 Length vendor_name
UNSIGN8 Length controller_type
UNSIGN8 Length HW_release
UNSIGN8 Length SW_release
char[ident_size] ASCII character string

ident_size must be at least equal to the sum of the previous four parts, but cannot exceed 238 bytes.

Note: All times are given as bit times.

The recommended parameter values for various baud rates is shown below:

Baud Rate 9 . 6 1 9 . 2 9 3 . 7 5 1 8 7 . 5 5 0 0

tsl 100 200 500 1500 3500
min_tsdr 30 60 125 250 500
max_tsdr 50 100 250 500 1000
tqui 0 0 0 0 0
tset 5 10 15 25 50
ttr 10000 15000 30000 50000 100000
g 1 1 1 1 1

The target rotation time (ttr) depends upon the actual load and number of connected stations.Too small a value should not
be chosen for the sake of efficiency.

Layer 2 demands on the processor can be reduced by using a large slot time and a small GAP factor. This will ensure that
not much time is wasted waiting for responses from busy or non-available partners.

The participant is passive when the in_ring_desired is set to FALSE.

Page 4-88 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_CHANGE_BUSPARAMETER Confirmation

Description:

The acceptance of the bus parameters are confirmed or, if errornous (invalid parameters, etc.), denied.

Data Structure:

Service Description Block

Bus Parameter Block

Identity Field

 descr_ptr

 ident

The bus parameter block is returned to the FDL-User. The FDL keeps a copy of the data. It is recommended that the
FDL-User retains the bus parameter block for any minor changes needed later.

Service Description Block:

sap remains unchanged
service FMA2_CHANGE_BUSPARAMETER
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, IV or LR see below
descr_ptr remains unchanged Pointer to bus parameter block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
IV Invalid parameter in request or invalid service
LR Bus parameters are not set by a previous

FMA2_SET_BUSPARAMETER service

May 20, 1996 © 1995 PEP Modular Computers Page 4-89

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_SET_STATISTIC_CTR Request

Description:

The statistic counter in the FDL is reset to zero and restarted.

Data Structure:

Service Description Block

 descr_ptr

Service Description Block:

sap MSAP_0
service FMA2_SET_STATISTIC_CTR
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr not significant
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-90 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_SET_STATISTIC_CTR Confirmation

Description:

The reset of the statistical counter is confirmed.

Data Structure:

Service Description Block

 descr_ptr

Service Description Block:

sap remains unchanged
service FMA2_SET_STATISTIC_CTR
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK or IV
descr_ptr not significant
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
IV Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-91

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_READ_BUSPARAMETER Request

Description:

This primitive is used by the FDL to read the actual bus parameters with the exception of the identity field. The
FMA2_IDENT service is used to read the identity field.

Data Structure:

Service Description Block

Bus Parameter Block

 descr_ptr

The FDL-User supplies a structure of the type T_FDL_BUSPAR_BLOCK to the FDL. No additional reference must be
made for the identity field.

Service Description Block:

sap MSAP_0
service FMA2_READ_BUSPARAMETER
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_BUSPAR_BLOCK far *) Pointer to bus parameter block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Bus Parameter Block:

The bus parameter block must have the same structure as in the FMA2_SET_BUSPARAMETER service call. The
pointer to the identity field is however, without significance.

Page 4-92 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_READ_BUSPARAMETER Confirmation

Description:

The read bus parameters are given over to the FDL-User.

Data Structure:

Service Description Block

Bus Parameter Block

 descr_ptr

Service Description Block:

sap remains unchanged
service FMA2_SET_BUSPARAMETER
primitive REQ
user_id remains unchanged Identification possibility for FDL-User
status OK or IV see below
descr_ptr remains unchanged
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Bus Parameter Block:

loc_add.station 0..126 Own station address
loc_add.segment 0..63 or NO_SEGMENT Own segment address
baud_rate K_BAUD_9_6, or

K_BAUD_19_2, or
K_BAUD_93_75, or
K_BAUD_187_5, or
K_BAUD_500

medium_red NO_REDUNDANCY or REDUNDANCY
tsl 1..65535 Slot time
min_tsdr 1..65535 Minimum station delay time
max_tsdr 1..65535 Maximum station delay time
tqui 0..255 Modulator decouple time
tset 1..255 Exposure time (set up)
ttr 1..224-1 Target rotation time
g 1..100 GAP update factor
in_ring_desired TRUE or FALSE Desired participation in token ring
hsa 2..126 Highest station address (in local segment)
max_retry_limit 1..8 Maximum retrys in event of error
ident NULL
ind_buf_len 0, 1-255 Token brake

May 20, 1996 © 1995 PEP Modular Computers Page 4-93

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
IV Invalid parameter in request

Page 4-94 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_READ_STATISTIC_CTR Request

Description:

With this service the FDL is instructed to read the statistical counter.

Data Structure:

Service Description Block

Statistic Counter

 descr_ptr

The FDL-User must use a data structure of the type T_FDL_STATISTIC_CTR into which the read values are entered.

Service Description Block:

sap MSAP_0
service FMA2_READ_STATISTIC_CTR
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_STATISTIC_CTR far *) Pointer to statistic counter
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Statistic Counter:

frame_send_count not significant
retry_count not significant
sd_count not significant
sd_error_count not significant

May 20, 1996 © 1995 PEP Modular Computers Page 4-95

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_READ_STATISTIC_CTR Confirmation

Description:

The read statistical values are transferred to the FDL-User.

Data Structure:

Service Description Block

Statistic Counter

 descr_ptr

Service Description Block:

sap remains unchanged
service FMA2_READ_STATISTIC_CTR
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK or IV Status
descr_ptr remains unchanged Pointer to statistic counter
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Statistic Counter:

frame_send_count 1..232-1 Number of sent telegrams
retry_count 1..216-1 Number of repeated telegrams
sd_count 1..232-1 Number of valid start delimiters
sd_error_count 1..216-1 Number of errornous start delimiters

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
IV Invalid parameter in request

Page 4-96 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_READ_TRR Request

Description:

With this service the FDL is given the task of reading the “Real Target Rotation Time”.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

UNSIGN32

 descr_ptr

The FDL-User must supply a pointer to the 32-bit variable into which the FDL can place the read value.

Service Description Block:

sap MSAP_0
service FMA2_READ_TRR
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (UNSIGN32 far *) Pointer to 32-bit variable
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-97

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_READ_TRR Confirmation

Description:

The read “Real Target Rotation Time” is given to the FDL-User.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

UNSIGN32

 descr_ptr

Service Description Block:

sap remains unchanged
service FMA2_READ_TRR
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, IV or NO see below
descr_ptr (UNSIGN32 far *) Pointer to TRR variable
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
NO No reply data will be transfered
IV Invalid parameter in request

Page 4-98 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_READ_LAS Request

Description:

The FDL is instructed to read the “List of Active Stations” (LAS) This service is only supported by the active
participants.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

Byte Field

 descr_ptr

The FDL-User points to a byte field with the length hsa+1 into which the FDL can enter the LAS.

Service Description Block:

sap MSAP_0
service FMA2_READ_LAS
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (UNSIGN8 far *) Pointer to byte field (length hsa+1)
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-99

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_READ_LAS Confirmation

Description:

The read value of the “List of Active Stations” (LAS) is given to the FDL-User.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

Byte Field

 descr_ptr

Service Description Block:

sap remains unchanged
service FMA2_READ_LAS
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, IV or NO Status
descr_ptr (UNSIGN8 far *) Pointer to read LAS
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

List of Active Stations (LAS):

The LAS is entered into the byte field, given during the request.

Byte i (0 < = i < = hsa) gives the status of participant i.

00 = Participant is not active in the logical token ring.

01 = Participant is active in the logical token ring.

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
NO No reply data will be transfered
IV Invalid parameter in request

Page 4-100 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_READ_GAPLIST Request

Description:

The FDL is instructed to read the “GAP-List”. This service lists stations that lie between the next active station and your
own address.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

Byte Field

 descr_ptr

The FDL-User points to a byte field with the length hsa+1 into which the FDL can enter the “GAP-List”.

Service Description Block:

sap MSAP_0
service FMA2_READ_GAPLIST
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (UNSIGN8 far *) Pointer to byte field (length hsa+1)
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-101

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_READ_GAPLIST Confirmation

Description:

The “GAP-List” is given over to the FDL-User.

Note: This service is only supported on active (Master) stations.

Data Structure:

Service Description Block

Poll Entry Block

 descr_ptr

Service Description Block:

sap MSAP_0
service FMA2_READ_GAPLIST
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, IV or NO Status
descr_ptr (UNSIGN8 far *) Pointer to byte field (length hsa + 1)
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

GAP-List:

The GAP-List is entered into the byte field, given during the request. It only provides information about the gaps
between the addresses of the other active participants and yourself.

Byte i (0 < = i < = hsa) gives the status of participant i.

00 = Passive participant.

01 = Active participant, not ready for the logical token ring.

02 = Active participant, ready for the logical token ring.

03 = Active participant, currently on the logical token ring.

17 = Participant unknown, no answer.

255 = Participant is not in own GAP area.

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
NO No reply data will be transfered
IV Invalid parameter in request

Page 4-102 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_EVENT Indication

Description:

The FDL informs the FDL-User that an event or an error has occurred.

Data Structure:

Service Description Block

 descr_ptr

Service Description Block:

sap MSAP_1
service FMA2_EVENT
primitive IND
user_id 0..65535 Identification possibility for FDL-User
status see below Event or error
descr_ptr not significant
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

1 FMA2_FAULT_ADDRESS Multiple FDL addresses exist for this participant
2 FMA2_FAULT_TRANSCEIVER Error in transmitter or receiver
3 FMA2_FAULT_TTO Bus timeout, TTO expired
4 FMA2_FAULT_SYN No receiving synchronization, TSYNI expired
5 FMA2_FAULT_OUT_OF_RING An active participant has left the logical ring
6 FMA2_GAP_EVENT A new participant has been inserted into or removed from the GAP area

of the token ring

May 20, 1996 © 1995 PEP Modular Computers Page 4-103

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_IDENT Request

Description:

The FDL is given the task of reading its own identification, or that of another participant.

Note: Requesting the identification from remote stations is only supported by active stations.

Data Structure:

 resource.buffer_ptr

Reply Buffer

Service Description Block

Transmit/Receive Block

Transmit Buffer

 descr_ptr

 send_data.buffer_ptr

 (length 13 Bytes)

 (length 255 Bytes)

The FDL-User must provide a pointer to the transmit/receive block. This in turn points to the buffers containing the call
and answer telegrams. The buffer for the calling telegram must be 13 bytes long and that of the answer telegram 255
bytes (in order to accept the longest identification length).

Service Description Block:

sap MSAP_0
service FMA2_IDENT
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SR_BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-104 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap not significant
rem_add.station 0..126 Address of station to be identified
rem_add.segment NO_SEGMENT FMA2 service only in own segment
serv_class not significant
update_status not significant
send_data.buffer_ptr (UNSIGN8 far*) Pointer to transmit buffer
send_data.length not significant Length of user data
receive_data.buffer_ptr not significant
receive_data.length not significant
resource.buffer_ptr (UNSIGN8 far*) Pointer to reply buffer
resource.length 255 Length of reply buffer

May 20, 1996 © 1995 PEP Modular Computers Page 4-105

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_IDENT Confirmation

Description:

The FDL receives the requested identification or returns a negative status.

Data Structure:

 receive.data_buffer_ptr

 resource.buffer_ptr

Reply Buffer

Service Description Block

Transmit/Receive Block

Transmit Buffer

 descr_ptr

 send_data.buffer_ptr

 (length 13 Bytes)

 FDL-Header

 Identification

 FDL-Trailer

The pointer receive.buffer_ptr shows the start of the identity field in the reply buffer.

Service Description Block:

sap remains unchanged
service FMA2_IDENT
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LR, NA, NLT, NR or IV see below
descr_ptr remains unchanged Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-106 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap not significant
rem_add.station remains unchanged
rem_add.segment remains unchanged
serv_class not significant
update_status not significant
send_data.buffer_ptr remains unchanged Pointer to transmit buffer
send_data.length remains unchanged
receive_data.buffer_ptr (USIGN8 far *) Pointer to identity field buffer
receive_data.length 4..242 Length of identity data
resource.buffer_ptr remains unchanged
resource.length remains unchanged

Identity Field:

The identification is placed into a field (identity field) having the following structure:

UNSIGN8 Length vendor_name
UNSIGN8 Length controller_type
UNSIGN8 Length HW_release
UNSIGN8 Length SW_release
char[238] ASCII character string

Status Values:

Code Meaning
OK Identification could take place
LR Local resource limitation

NTL Own station not in logical token ring
NA The called participant did not answer
NR The identity data is not available at the called station
IV Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-107

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_LSAP_STATUS Request

Description:

The FDL is given the task of supplying its SAP configuration, or determining that of another participant. Only active
participants support a request for SAP configuration.

Note: Requesting the SAP configuration from a remote station is only supported by active stations.

Data Structure:

 resource.buffer_ptr

Reply Buffer

Service Description Block

Transmit/Receive Block

Transmit Buffer

 descr_ptr

 send_data.buffer_ptr

 (length 13 Bytes)

 (length 19 Bytes)

The FDL-User must provide a pointer to the transmit/receive block. This in turn points to the buffers containing the call
and answer telegrams. The buffer for the transmit telegram must be 13 bytes long and that of the answer telegram 19
bytes (to accept the 6 byte status information).

Service Description Block:

sap MSAP_0
service FMA2_LSAP_STATUS
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SR_BLOCK far*) Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-108 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap 0..63 or DAULT_SAP Desired Service Access Point
rem_add.station 0..126 Address of station desired
rem_add.segment NO_SEGMENT FMA2 service only in own Segment
serv_class not significant
update_status not significant
send_data.buffer_ptr (UNSIGN8 far*) Pointer to transmit buffer
send_data.length not significant Length of user data
receive_data.buffer_ptr not significant
receive_data.length not significant
resource.buffer_ptr (UNSIGN8 far*) Pointer to reply buffer
resource.length 19 Length of reply buffer

May 20, 1996 © 1995 PEP Modular Computers Page 4-109

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_LSAP_STATUS Confirmation

Description:

The FDL receives the requested configuration data or returns a negative status.

Data Structure:

 receive.data_buffer_ptr

 resource.buffer_ptr

Reply Buffer

Service Description Block

Transmit/Receive Block

Transmit Buffer

 descr_ptr

 send_data.buffer_ptr

 (length 14 Bytes)

 FDL-Header

 LSAP Status

 FDL-Trailer

If the status is OK, the pointer receive.buffer_ptr shows the start of the status field in the reply buffer.

Service Description Block:

sap remains unchanged
service FMA2_LSAP_STATUS
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, RS, NA, NLT, NR or IV see below
descr_ptr remains unchanged Pointer to transmit/receive block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-110 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Transmit/Receive Block:

loc_add.station not significant
loc_add.segment not significant
remote_sap remains unchanged
rem_add.station remains unchanged
rem_add.segment remains unchanged
serv_class not significant
update_status not significant
send_data.buffer_ptr remains unchanged Pointer to transmit buffer
send_data.length remains unchanged
receive_data.buffer_ptr (USIGN8 far *) Pointer to LSAP status field
receive_data.length 6 Length of LSAP status field
resource.buffer_ptr remains unchanged Pointer to reply buffer
resource.length remains unchanged Length of reply buffer

LSAP Status Field:

The identification is placed into a field (LSAP status field) having the following structure:

UNSIGN8 access.station 0..126 or global 127
UNSIGN8 access.segment 0..63 or NO_SEGMENT
UNSIGN8 service 1 see below
UNSIGN8 service 2 see below
UNSIGN8 service 3 see below
UNSIGN8 service 4 see below

For the parameters service 1 to service 4 the following coding is used:

B 7 B 6 B 5 B 4 Service B 3 B 2 B 1 B 0 Role

0 0 0 0 SDA 0 0 0 0 Initiator
0 0 0 1 SDN 0 0 0 1 Responder
0 0 1 1 SRD 0 0 1 0 Both
0 1 0 1 CSRD 0 0 1 1 Not activated

Status Values:

Code Meaning
OK Status reading could take place
RS Addressed participants SAP not active

NTL Own station not in logical ring
NA The called participant did not answer
NR The status data is not available at the called station
IV Invalid parameters in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-111

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_LIVELIST Request

Description:

The FDL is task with reading a “Live-List”, i.e. a list of participants currently active on the bus.

Note: This service is only supported by active (Master) stations.

Data Structure:

Service Description Block

Byte Field

 descr_ptr

The FDL-User points to a byte field with the length HSA+1 = 127 into which the FDL can enter the Live-List.

Service Description Block:

sap MSAP_0
service FMA2_LIVELIST
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (UNSIGN8 far*) Pointer to byte field HSA+1
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-112 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_LIVELIST Confirmation

Description:

The “Live-List” or a negative status is given to the FDL-User.

Note: This service is only supported by active (Master) stations.

Data Structure:

Service Description Block

Byte Field

 descr_ptr

Service Description Block:

sap remains unchanged
service FMA2_READ_LIVELIST
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LR, NLT or IV see below
descr_ptr remains unchanged Pointer to read Live-List
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Live-List:

The Live-List is entered into the byte field, given during the request.

Byte i (0 < = i < = 126) gives the status of participant i.

00 = Passive participant.

01 = Active participant, not ready for the logical token ring.

02 = Active participant, ready for the logical token ring.

03 = Active participant, currently on the logical token ring.

17 = Participant unknown, no answer.

Status Values:

Code Meaning
OK Positive conformation that the service has been carried out
LR None or insufficient operational resources are available locally

NLT Local partner not in logical ring or has left bus
IV Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-113

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_ACTIVATE_SAP Request

Description:

The local Service Access Point (SAP) is activated and configured.

If an SAP for response functions of the SRD or CSRD service is required, the SAP is configured via the
FMA2_ACTIVATE_RSAP service call.

Data Structure:

Service Description Block

SAP Description Block

SAP Block

 descr_ptr

 sap_block_ptr

The FDL-User supplies a pointer to the SAP description block of type T_FDL_SAP_DESCR, this in turn points to a
SAP block of type T_FDL_SAP_BLOCK. The SAP description block and the SAP block remain in the FDL until the
service point is deactivated.

Service Description Block:

sap MSAP_2
service FMA2_ACTIVATE_SAP
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SAP_DESCR far *) Pointer to SAP description block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

SAP Description Block (T_FDL_SAP_DESCR):

sap_nr 0..63 or DEFAULT_SAP SAP to be activated
rem_add.station 0..126 or global address 127 Access protection for responder function
rem_add.segment 0..63 or NO_SEGMENT Access protection for responder function
sda INITIATOR or RESPONDER or

BOTH_ROLES or SERVICE_NOT_ACTIVATED
sdn INITIATOR or RESPONDER or

BOTH_ROLES or SERVICE_NOT_ACTIVATED
srd INITIATOR or SERVICE_NOT_ACTIVATED
csrd INITIATOR or SERVICE_NOT_ACTIVATED
services reserved for FDL
sap_block_ptr (T_FDL_SAP_BLOCK far*)
resrc_ptr not significant
resrc_ctr not significant
sema reserved for FDL

Page 4-114 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

SAP Block (T_FDL_SAP_BLOCK):

max_len_sda_req_low 0..242 Max. length of user data by SDA.req low
max_len_sda_req_high 0..242 Max. length of user data by SDA.req high
max_len_sda_ind_low 0..242 Max. length of user data by SDA.ind low
max_len_sda_ind_high 0..242 Max. length of user data by SDA.ind high
max_len_sdn_req_low 0..242 Max. length of user data by SDN.req low
max_len_sdn_req_high 0..242 Max. length of user data by SDN.req high
max_len_sdn_ind_low 0..242 Max. length of user data by SDN.ind low
max_len_sdn_ind_high 0..242 Max. length of user data by SDN.ind high
max_len_srd_req_low 0..242 Max. length of user data by SRD.req low
max_len_srd_req_high 0..242 Max. length of user data by SRD.req high
max_len_srd_con_low 0..242 Max. length of user data by SRD.con low
max_len_srd_con_high 0..242 Max. length of user data by SRD.con high

May 20, 1996 © 1995 PEP Modular Computers Page 4-115

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_ACTIVATE_SAP Confirmation

Description:

The FDL confirms activation of the Service Access Point, or an error-status is returned.

Data Structure:

Service Description Block

 descr_ptr

In the event of an error, the data structure received during the request is returned. A positive confirmation (an “OK” status)
results in only the Service Description Block being returned.

Service Description Block:

sap remains unchanged
service FMA2_ACTIVATE_SAP
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, NO or IV see below
descr_ptr NULL By error remains unchanged
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK The SAP could be accessed in the desired way
NO The SAP could not be activated, or is already active
IV Invalid parameter in request

Page 4-116 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_ACTIVATE_RSAP Request

Description:

A local Service Access Point is activated and configured for a responder function with the SRD and CSRD services.

Data Structure:

Service Description Block

SAP Description Block

RSAP Block

 descr_ptr

 sap_block_ptr

The FDL-User supplies a pointer to the SAP description block of the T_FDL_SAP_DESCR type, this in turn points to
a RSAP block of the T_FDL_RSAP_BLOCK type. The SAP description block and the RSAP block remain in the FDL
until the service point is deactivated.

Service Description Block:

sap MSAP_2
service FMA2_ACTIVATE_RSAP
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SAP_DESCR far*) Pointer to SAP description block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

SAP Description Block (T_FDL_SAP_DESCR):

sap_nr 0..63 or DEFAULT_SAP SAP to be activated
rem_add.station 0..126 or global address 127 Access protection during responder function
rem_add.segment 0..63 or NO_SEGMENT Access protection during responder function
sda SERVICE_NOT_ACTIVATED
sdn SERVICE_NOT_ACTIVATED
srd RESPONDER
csrd SERVICE_NOT_ACTIVATED
services reserved for FDL
sap_block_ptr (T_FDL_RSAP_BLOCK far*)
resrc_ptr not significant
resrc_ctr not significant
sema reserved for FDL

May 20, 1996 © 1995 PEP Modular Computers Page 4-117

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

RSAP Block (T_FDL_RSAP_BLOCK):

indication_mode ALL or DATA
max_len_upd_req_low 0..242 Max. length of user data by REPLY_UPDATE.req low
max_len_upd_req_high 0..242 Max. length of user data by REPLY_UPDATE.req high
max_len_sdr_ind_low 0..242 Max. length of user data by SRD.ind low
max_len_sdr_ind_high 0..242 Max. length of user data by SRD.ind high
upd_buf_low not significant
upd_buf_high not significant
telegram_low not significant
telegram_high not significant
transmit_low reserved for FDL
transmit_high reserved for FDL
marker_low reserved for FDL
marker_high reserved for FDL
fcs_low reserved for FDL
fcs_high reserved for FDL

Page 4-118 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_ACTIVATE_RSAP Confirmation

Description:

The local station’s FDL confirms activation of the Service Access Point for a responder function under SRD or CSRD
services, or returns an error status.

Data Structure:

Service Description Block

 descr_ptr

In the event of an error, the data structure received during the request is returned. A positive confirmation (an “OK” status)
results in only the Service Description Block being returned.

Service Description Block:

sap remains unchanged
service FMA2_ACTIVATE_RSAP
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, NO or IV see below
descr_ptr NULL In event of error remains unchanged
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK The Service Access Point could be activated in the desired way
NO The Service Access Point could not be activated in the desired way or

is already activated
IV Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-119

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

FMA2_DEACTIVATE_SAP Request

Description:

The FDL has the task of deactivating a local Service Access Point.

Data Structure:

Service Description Block

SAP Deactivation Block

 descr_ptr

The FDL-User provides a pointer to the SAP deactivation block, in which the Service Access Point to be deactivated is
defined.

Service Description Block:

sap MSAP_2
service FMA2_DEACTIVATE_SAP
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_DEACT_SAP far *) Pointer to SAP deactivation block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

SAP Deactivation Block (T_FDL_DEACT_SAP)

ssap 0..63 or DEFAULT_SAP Service Access Point to be deactivated
sap_descr_ptr not significant

Page 4-120 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

FMA2_DEACTIVATE_SAP Confirmation

Description:

The FDL confirms the deactivation of the Service Access Point and returns all data structures that were assigned to this
Service Access Point, or an error status is flagged.

Data Structure:

Service Description Block

 descr_ptr

Linked Resources for Indications (Quantity =
resrc_ctr)

T_FDL_SAP_DESCR

sap_descr_ptr

T_FDL_(R)SAP_BLOCK

sap_block_ptr

resrc_ctr
resrc_ptr

T_FDL_SERVICE_DESCR

resource.buf_ptr

Receive Buffer

descr_ptr

next_descr

T_FDL_SR_BLOCK

T_FDL_DEACT_SAP

The SAP deactivation block (T_FDL_DEACT_SAP) contains a pointer to the SAP description block, which as during
the SAP activation points to the SAP block (T_FDL_SAP_BLOCK or T_FDL_RSAP_BLOCK).

Additionally, the parameter resrc_ptr in the SAP description block gives details about the “chain” of linked resources
needed to process the indications assigned to this Service Access Point, and given to the FDL through the use of the
PUT_RESRC_TO_FDL service.

May 20, 1996 © 1995 PEP Modular Computers Page 4-121

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

Service Description Block:

sap remains unchanged
service FMA2_DEACTIVATE_SAP
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, NO or IV see below
descr_ptr remains unchanged Pointer to SAP deactivation block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

SAP Deactivation Block (T_FDL_DEACT_SAP)

ssap remains unchanged To deactivate the Service Access Point
sap_descr_ptr (T_FDL_SAP_DESCR far *) Pointer to SAP description block

Status Values:

Code Meaning
OK The Service Access Point is deactivated
NO The desired Service Access Point does not exist
IV Invalid parameter in request

Page 4-122 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.5.8 Services for the Administration of the Resources

The layer 2 software requires a receiver buffer, into which the incoming telegrams are stored together with their respective
parameter blocks, where also the parameters for the indications may be entered.

The FDL-User is therefore responsible in ensuring that these resources are always available (in layer 2) in sufficient
forms. For the handover of resources to the FDL and to take back resources no longer required, three services are provided.
These three services are described in the following pages.

May 20, 1996 © 1995 PEP Modular Computers Page 4-123

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

WAIT_FOR_FMA2_EVENT Request

Description:

The FDL-User supplies a resource to the FDL to process FMA2_EVENTs.

Data Structure:

Service Description Block

Service Description Block for FMA2_Event

 descr_ptr

The first Service Description Block is returned for the confirmation. The second remains in the FDL for the processing of
the FMA2_EVENTs. Only one resource can be given to the FDL at a time.
The FMA2_EVENTs are stored in the FDL in a ring buffer. After receipt of a resource the oldest FMA2_EVENT is
announced.

Service Description Block:

sap not significant
service WAIT_FOR_FMA2_EVENT
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_SERVICE_DESCR far *) Pointer to Service Description Block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Handed Over Service Description Block:

sap not significant
service not significant
primitive not significant
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr not significant
next_descr reserved for FDL

Page 4-124 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

WAIT_FOR_FMA2_EVENT Confirmation

Description:

The provision of a resource for FMA2_EVENTs processing is confirmed, or an error status flagged.

Data Structure:

Service Description Block

 descr_ptr

If status is “OK” only the Service Description Block for the WAIT_FOR_FMA2_EVENT services is returned. The hand-
over Service Description Block remains in the FDL.

Service Description Block:

sap remains unchanged
service WAIT_FOR_FMA2_EVENT
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LR or IV see below
descr_ptr NULL In the event of error remains unchanged
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK Resource accepted
LR Resource not accepted, as the FMA2 already contains a resource
IV Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-125

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

WITHDRAW_EVENT Request

Description:

The FDL-User withdraws the resource from the FDL to process FMA2_EVENTs.

Data Structure:

Service Description Block

 descr_ptr

Service Description Block:

sap not significant
service WITHDRAW_EVENT
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr not significant
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-126 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

WITHDRAW_EVENT Confirmation

Description:

The resource for FMA2_EVENTs processing is confirmed, or an error status flagged.

Data Structure:

Service Description Block

 descr_ptr

Service Description Block:

sap remains unchanged
service WITHDRAW_EVENT
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LR or IV Status
descr_ptr (T_FDL_SERVICE_DESCR far *) Pointer to resource for FMA2_EVENT
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Status Values:

Code Meaning
OK Resource accepted
LR Resource not available
IV Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page 4-127

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

PUT_RESRC_TO_FDL Request

Description:

The FDL-User returns the FDL resources to process SDA, SDN and SRD indications (of a certain Service Access Point)
or to process a CSRD confirmation of a defined Poll-List entry.

Data Structure:

Service Description Block

 descr_ptr

Linked Resources for Indications (Quantity =
resrc_ctr)

no_of_resources

resrc_ptr

T_FDL_SERVICE_DESCR

resource.buf_ptr

Receive Buffer

descr_ptr

T_FDL_SR_BLOCK

T_FDL_RESRC_DESCR

Service Description Block:

sap 0..63 or DEFAULT_SAP SAP to which the resources are assigned
service PUT_RESRC_TO_FDL
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_RESRC_DESCR far *) Pointer to resources descriptor
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-128 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Resources Descriptor (T_FDL_RESRC_DESCR)

dsap 0..62 or DEFAULT_SAP Service Access Point and
rem_add.station 0..126 partner address to identify the poll
rem_add.segment 0..62 or NO_SEGMENT list entry in the Poll-List SAP
nr_of_resources > 0 Quantity of the supplied resources
resrc_ptr (T_FDL_SERVICE_DESCR far *) Pointer to resource list

May 20, 1996 © 1995 PEP Modular Computers Page 4-129

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

PUT_RESRC_TO_FDL Confirmation

Description:

The FDL confirms the acceptance of the resources for the required Service Access Point or Poll-List entry, or an error
status is returned.

Data Structure:

Service Description Block

 descr_ptr

T_FDL_RESRC_DESCR

If status is “OK” only the Service Description Block and the resource description block is returned; in the event of an
error occurring the complete structure supplied during the request is returned.
The resource description block, therefore, only needs to be provided once and can be used many times again for the
transfer of resources as required.

Service Description Block:

sap remains unchanged
service PUT_RESRC_TO_FDL
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, NO or IV see below
descr_ptr (T_FDL_RESRC_DESCR far *) Pointer to resource description block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Resources Description (T_FDL_RESRC_DESCR)

dsap remains unchanged
rem_add.station remains unchanged
rem_add.segment remains unchanged
nr_of_resources remains unchanged
resrc_ptr Null In the event of error remains unchanged

Status Values:

Code Meaning
OK The resources are accepted
NO The desired Service Access Point or Poll-List does not exist
IV Invalid parameter in request

Page 4-130 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

WITHDRAW_RESRC_FROM_FDL Request

Description:

The resources supplied for a particular Service Access Point or Poll-List entry are to be withdrawn.

Data Structure:

Service Description Block

T_FDL_RESRC_DESC
R

 descr_ptr

Service Description Block:

sap 0..63 or DEFAULT_SAP SAP from which the resources are withdrawn
service WITHDRAW_RESRC_FROM_FDL
primitive REQ
user_id 0..65535 Identification possibility for FDL-User
status not significant
descr_ptr (T_FDL_RESRC_DESCR far *) Pointer to resource description block
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Resource Description (T_FDL_RESRC_DESCR)

dsap 0..62 or DEFAULT_SAP Service Access Point and
rem_add.station 0..126 partner address to identify the Poll-
rem_add.segment 0..62 or NO_SEGMENT List entry in Poll-List SAP
nr_of_resources not significant
resrc_ptr not significant

May 20, 1996 © 1995 PEP Modular Computers Page 4-131

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

WITHDRAW_RESRC_FROM_FDL Confirmation

Description:

The FDL gives the resources from the designated Service Access Point or Poll-List entry back or flags an error status.

Data Structure:

Service Description Block

 descr_ptr

Linked Resources for Indications (Quantity =
resrc_ctr)

no_of_resources

resrc_ptr

T_FDL_SERVICE_DESCR

resource.buf_ptr

Receive Buffer

descr_ptr

T_FDL_SR_BLOCK

T_FDL_RESRC_DESCR

Service Description Block:

sap remains unchanged
service WITHDRAW_RESRC_FROM_FDL
primitive CON
user_id remains unchanged Identification possibility for FDL-User
status OK, LR or IV Status
descr_ptr remains unchanged Pointer to resources description
next_descr reserved for FDL
link_descr reserved for FDL
resrv reserved for FDL

Page 4-132 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

Resources Description (T_FDL_RESRC_DESCR)

dsap remains unchanged
rem_add.station remains unchanged
rem_add.segment remains unchanged
nr_of_resources >= 0 Number of returned resources
resrc_ptr (T_FDL_SERVICE_DESCR far *) Pointer to resource list

Status Values:

Code Meaning
OK The resources are accepted
LR The desired Service Access Point or Poll-List entry does not exist
IV Invalid parameter in request

An application program structure using the pbl2llf.l library is shown overleaf.

May 20, 1996 © 1995 PEP Modular Computers Page 4-133

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

fdl_openopen PROFIBUS
device

fdl_req
(FMA2_SET_BUSPARAMETER)

set bus
parameters

wait for
confirmation

fdl_con_ind

fdl_req
(FMA2_ACTIVATE_SAP)activate SAP

wait for
confirmation

fdl_con_ind

fdl_open open PROFIBUS
device

fdl_req
(FMA2_SET_BUSPARAMETER)

set bus
parameters

wait for
confirmation

fdl_con_ind

fdl_req
(FMA2_ACTIVATE_SAP)

activate SAP

wait for
confirmation

fdl_con_ind

fdl_req
(PUT_RESRC_TO_FDL)

fdl_req
(SDA)send data wait

wait for
confirmation

fdl_con_ind
wait for
confirmation/
indication

fdl_con_ind

fdl_req
(PUT_RESRC_TO_FDL)

SDA_indication

repeat

repeat

deactivate SAP fdl_req
(FMA2_DEACTIVATE_SAP)

deactivate SAP

wait for
confirmation

fdl_con_ind wait for
confirmation

fdl_con_ind

fdl_closeclose PROFIBUS
device

fdl_close close PROFIBUS
device

Application on Master Application on Master/Slave

fdl_req
(FMA2_DEACTIVATE_SAP)

BUS

SDA-data

no

yes

yes

no

yes

no

Page 4-134 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

4.5.9 Parameterizing Layer 2

The user is allowed to modify several entries in the following files in order to adapt them to his application requirements:

/PROFINET/BSP/VIUC/PBL2DESC/pSMART_<n>.a (n = 1,2,3)
/PROFINET/BSP/VIUC/PBL2DESC/pVIUC_<n>.a
/PROFINET/BSP/VM30/PBL2DESC/pVM30_<n>.a
/PROFINET/BSP/COMMON/NFMDESC/n1PROFI.a
/PROFINET/BSP/COMMON/DATMOD/busPB.a

Additionally, the utility pbmode provides the possibility to modify the bus parameter setting in the busPB data module or
during a running PROFIBUS application.

pSMART_<n>.a
pVIUC_<n>.a
pVM30_<n>.a

The user is allowed to change the following entries:

D_CheckReq - This entry is the flag to check send data service requests, such as SDA, SDN or SDR.

0x00 No parameter check in request services recommended when only Level 7 applications are running,
as Layer 7 also checks the parameters

0x01 - 0xFF Parameter check recommended when Layer 2 applications are running

D_UseL7 - Flag to use L2 or L7 queue handling.

PEOFIBUS offers the user two levels of priority (LOW/HIGH) in order to deal with services. In the normal running of
the application, low prioity message cycles are dealt with. If an alarm status is transmitted, high priority message cycles
can be employed. High priority message cycles are dealt with first and , from a time viewpoint, can overtake low priority
message cycles.

If Layer 2 is driven together with Layer 7, certain limitations must be taken into account when using high priority
message cycles. According to the PROFIBUS standards, Layer 7 tasks can only be carried out when a connection to a
station completed. The connection is always made before priority tasks. If a high priority message is generated
immediately after the building of the connection, it could be that this message is dealt with before the connection
acknowledgement. In this case, the connection is immediately cut off.

In order to deal with this problem, D_UseL7 must be set. The high and low priority queues can then be dealt with in
such a way that no limitations of the choice of priority need occur under Layer 7.

0x00 L2 queue handling, high and low priority request service support recommended when Layer 2
applications are running

0x01 - 0xFF L7 queue handling, high priority request handling recommended in the same way as low priority
requests when only Layer 7 applications are running

D_UseNLT - Flag to support NLT error handling.

0x00 No NLT handling recommended
0x01 - 0xFF NLT error handling. The status NLT is signalled when a remote call cannot be generated due to the

fact that the active station does not join or was removed from the logical token ring.

D_CountNLT - Counter for NLT. This is only used if D_UseNLT <> 0.

May 20, 1996 © 1995 PEP Modular Computers Page 4-135

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

n1PROFI.a

The following entry can be modified:

PB_SAP equ 60

This is the selected PROFIBUS Service Access Point that is used for the OS-9/NET communication. It is recommended
to modify the value for PB_SAP only if this SAP must be used in a PROFIBUS application.

busPB.a

This file is a pure data file and contains all bus parameters that are related to the FMA2_SET_BUSPARAMETER
service. From this assembler source file makefile shows various object files that are stored under different data names.
The module name is busPB for all the data.

Function

open_PROFI in the pbL2hlf.l library selects the bus parameters from the data module busPB, and initiates the
service FMA2_SET_BUSPARAMETER.

This data module must be present in the OS-9 module directory if the function commands of the pbL2hlf.l library are
required when OS-9/PROFINET is initiated or an application program is running. With a romable OS-9 the module
busPB can be present in the EPROM.

makefile generates various object files from the base file busPB.a, whereby the following three different parameters
are pre-set when assembling is complete:

LOC_ADDR determines the bus parameter station
MODE defines the bus parameter in_ring_desired
PROFI selects the PROFIBUS devices /profi_ 1 or /profi_2

The following files are generated with makefile:

bPB1_1 - bPB1_10 stations 10 data modules for PROFIBUS stations numbered 1-10; the device profi_1
and thus the interface MC68302 SCC#1 is defined as a PROFIBUS
connection.

bPB2_1 - bPB2_10 As above except using PROFIBUS device /profi_2.

bPB1_S DIP switch settings on the CXM or STAT-1 or STAT-2 are read and used to
define the local PROFIBUS station address.
The PROFIBUS device is /profi_1.

bPB2_S As bPB1_S except that the PROFIBUS device is /profi_2.

bPB1_I DIP switch settings on the IUC board defines the PROFIBUS station address.
The PROFIBUS device is /profi_1.

bPB2_I As above except using PROFIBUS device /profi_2.

bPB1_M A pre-defined value in EEPROM on the SMART-I/O defines the PROFIBUS
station address.
The PROFIBUS device is /profi_1.

Page 4-136 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

The user has the capability to influence the setting of the PROFIBUS bus parameters (eg. baud rate) by changing the
values in the data module busPB. The contents of the file busPB are in the following order:

BP_BLOCK.station dc.b PB_station
BP_BLOCK.station_mask dc.b PB_station_mask
BP_BLOCK.segment dc.b PB_segment
BP_BLOCK.baud_rate dc.b PB_baud_rate
BP_BLOCK.medium_red dc.b PB_medium_red
BP_BLOCK.tsl dc.w PB_tsl
BP_BLOCK.min_tsdr dc.w PB_min_tsdr
BP_BLOCK.max_tsdr dc.w PB_max_tsdr
BP_BLOCK.tqui dc.b PB_tqui
BP_BLOCK.ttr dc.l PB_ttr
BP_BLOCK.g dc.b PB_g
BP_BLOCK.in_ring_desired dc.b PB_in_ring_desired
BP_BLOCK.hsa dc.b PB_hsa
BP_BLOCK.max_retry_limit dc.b PB_max_retry_limit
BP_BLOCK.token_hold dc.b PB_token_hold
BP_BLOCK.ident dc.l PB_ident
BP_BLOCK.device dc.l PB_device

PB.station This value is defined by the LOC_ADDR parameter after initiating the
Assembler with -a=LOC_ADDR=<n>, the values for <n> can be:
0,1,2,...126, 128, 129, 130

0..126 Local PROFIBUS station address

128 The local station address is determined by one of the DIP switch settings of
the status boards, CXM-STAT1 or -STAT2.
This value is linked with PB_station_mask.

129 The local station address is defined by the DIP switch settings on the IUC
board. This definition can only be selected if the PROFIBUS is booted with
an IUC board fitted with on-board DIP switches. The value read is linked to
PB_station_mask.

130 The local station address is defined by a value stored in EEPROM. This value
can only be selected if PROFIBUS is running on a SMART I/O board.

Note

Don't select station address = 0 if you are running OS-9/NET on PROFIBUS in parallel.

May 20, 1996 © 1995 PEP Modular Computers Page 4-137

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

PB_station_mask This is only used when PB.station>127.
Bit 7 is only controlled by parameter MODE
MODE is not specified or
MODE = 0 -> bit 7 = 0
MODE = 1 -> bit 7 = 1

Bit 6 depends on the value of bit 7.
If bit 7 = 0:
mask bit for corresponding DIP-switch to define the station address.
The station mode depends on the chosen value of PB_in_ring_desired
(default = 0xFF, active).
If bit 7 = 1:
value of corresponding DIP switch defines the value for
PB_in_ring_desired and therefore the station mode active or passive.

Bit 5 - bit 0: mask bits for corresponding DIPnswitches to define the station
address

Examples:
PB_station_mask = 0x8F
bit 7 = 1 -> DIP switch 6 defines station mode
bit 4 - bit 0 = 1 -> DIP switches 0 - 4 determine the station address

PB_station_mask = 0x7F
bit 7 = 0 and bit 0 - 6 = 1 -> DIP switches 0 - 6 determine the station address

PB_segment Local segment address
0...63 or 255 (NO_SEGMENT)
Default: NO_SEGMENT

PB_baud_rate Baud rate, valid baud rate codes are:
0 = 9600 (K_BAUD_9_6)
1 = 19200 (K_BAUD_19_2)
2 = 93750 (K_BAUD_93_75)
3 = 187500 (K_BAUD_187_5)
4 = 500000 (K_BAUD_500)
Default: K_BAUD_187_5
Depending on the selected baud rate code following parameters in busPB.a
are preset with recommended values:
PB_tsl
PB_min_tsdr
PB_max_tsdr
PB_tqui
PB_tset
PB_ttr
PB_g
The values of these parameters with the exception of PB_g are calculated in
bit times. PB_g is a multiple factor of PB_ttr.

PB_medium_red Valid values:
0: NO_REDUNDANCY
1: REDUNDANCY
Default: NO_REDUNDANCY

Page 4-138 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Chapter 4 Software Architecture

PB_tsl Slot time: 1...65535
Default: 3500

PB_min_tsdr Minimum station delay time: 1...65535
Default: 500

PB_max_tsdr Maximum station delay time: 1...65535
Default: 1000

PB_tqui Modulator decouple time: 0...255
Default: 0

PB_tset Set up time: 1...255
Default: 50

PB_ttr Target rotation time: 1...0xFFFFFF
Default: 100000

PB_g GAP update factor: 1...100
Default: 1

PB_in_ring_desired Desired role of station (passive/active)
0: passive station (FALSE)
0xFF: active station (TRUE)
The value of PB_in_ring_desired depends on the r68 parameter MODE
and LOC_ADDR.

PB_hsa Highest station address: 2...126
Default: 20

PB_max_retry_limit Maximum telegram retries: 1...8
Default: 1

PB_token_hold Token hold time (bit time)
0: No token hold
1...255: Token hold time
A token hold time is only recommended, if there are not more than two active
stations connected to the logical token ring.
Default: 0

PB_ident Offset pointer to the identity field

PB_device Offset pointer to the PROFIBUS device name. The PROFIBUS device name
depends on the value of the r68 parameter PROFI.
Possible names are:
/profi_1
/profi_2
/profi_3

May 20, 1996 © 1995 PEP Modular Computers Page 4-139

Chapter 4 Software Architecture Profibus Layer 2 User’s Manual

pbmode

The pbmode utility provides the possibility to modify the bus parameters defined in the busPB data module. Normally the
modifications are only effective when the changes are made before a PROFIBUS application has been run. Bus parameter
changes can be made dynamically during the running of a PROFIBUS application using the option ‘-c’.

Function

Modify the bus parameters.

Syntax

pbmode <options>

Options

Option Parameter Value
-p Default parameter dependent on the baud rate
-c Change parameter dynamically on Layer 2
-h= Highest station address 2 .. 126
-m= In ring desired 0 (FALSE), <> 0 (TRUE)
-a= Station address 0 .. 126, 128, 129, 130

0 .. 126: define station address
128: CxM-STATx define station address by DIP switch
129: IUC define station address by DIP switch
130: SMART I/O define station address by DIP switch

-w Write station address 0 .. 126
Valid only if modification is possible

-v= Station mask 0X00, 0xFF
-s= Station segment 0 .. 63/255
-b= Baud rate 0, 1, 2, 3, 4
-g= Gap update 1 .. 100
-r Maximal retry limit 1 .. 8
-d= Token delay 0 (no delay), 1 .. 255
-tt= Target rotation time (trr) 1 .. 16777215 (0xFFFFFF)
-ts Slot time (tsl) 1 .. 65535 (0xFFFF)
-??= Minimum station delay time (min_tsdr) 1 .. 65535 (0xFFFF)
-??= Maximum station delay time (max_tsdr) 1 .. 65535)0xFFFF)
-tq= Modulator decouple time (tqui) 0 .. 255 (0xFF)
-te= Exposure time (tset) 1 .. 255 (0xFF)

Page 4-140 © 1995 PEP Modular Computers May 20, 1996

PROFIBUS Layer 2 User’s Manual Chapter 5 Release Notes
11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

5

5. RELEASE NOTES

OS9/PROFINET - Edition History

21/12 /92:

OS9/PROFINET V3.1 first release.

Current edition numbers of PROFIBUS modules:

phyPROFI edition #9
drvPROFI edition #4
profiman edition #6
nfPROFI edition #1
comPROFI edition #5

12/02 /93:

OS9/PROFINET V3.1/I1.1.

New:

PROFIBUS Layer 7 is now supported.

Major changes:

- The structure of T_FDL_SEVICE_DESCR defined in pbL2type.h has been extended, all PROFIBUS Layer 2
applications must be recompiled with the updated pbL2type.h file.

- There is a new file structure:

All OS-9/NET specific files are now included under the directory NET/ (e.g. nfm, chp ...). The others remain under
the PROFINET/ directory.

Current edition numbers of PROFIBUS modules:

phyPROFI edition #10
drvPROFI edition #5
profiman edition #7
nfPROFI edition #1
comPROFI edition #6
modPBL7 edition #3
srvPBL7 edition #1

May 20, 1996 © 1995 PEP Modular Computers Page 5-1

Chapter 5 Release Notes PROFIBUS Layer 2 User’s Manual

Note: PROFIBUS applications compiled with pbL2type.h and/or using library pbL2hlf.l from
OS-9/PROFINET V3.1 do not run with the new PROFIBUS modules. If this is the case, recompile with updated files.

The behaviour of PROFIBUS Layer 2 service FMA2_SET_BUSPARAMETER has been changed, refer to example
program sda_demo.c.

Do not mix PROFIBUS modules from different releases.

VIUC:

VIUC-board equipped with a PEPbug Monitor (up to Version 568-3).

If the upper SCC port of the VIUC is used as the PROFIBUS interface, the initialization of that port by the PEPbug
Monitor disturbs the PROFIBUS protocol of the remaining PROFIBUS stations that are connected to the network as
long as the VIUC upper port is not re-initialized by the PROFIBUS driver.

22/06 /93:

OS9/PROFINET V3.1/I1.2.

Major changes:

- Modifications in module phyPROFI:
Task using PROFIBUS services could hang in system call for an event (occurred only when a large amount of noise
was present on the PROFIBUS cable).
Support of 500 KBaud.

- Modifications in module profiman:
User signals are now returned.

- Modifications in the PROFIBUS device descriptors and “busPB.a” file are now allowed to run 500 KBaud (the
PROFIBUS board must be equipped with a MC68302-20MHz and a 24MHz oscillator).

- File names of “busPB” modules, generated from the “busPB.a” file, adapted to MS-DOS file name conventions
(e.g. busPB1_1 now bPB1_1).

- Library pbL2hlf.l extended:
Several functions added.
Modified behaviour of SRD Indications:
Responser SAP initialized with indication_mode == ALL (instead of indication_mode == DATA).

- Application “pbmode” added to modify bus parameters in the “busPB” data module. This affects only the PROFIBUS
initialization. If the modification is performed before initialization, a task opens the PROFIBUS and the task must
use the function call “open_PROFI” of the pbL2hlf.l library for opening.

Current edition numbers of PROFIBUS modules:

phyPROFI edition #14
drvPROFI edition #5
profiman edition #8
nfPROFI edition #1
comPROFI edition #6
modPBL7 edition #3
srvPBL7 edition #1

Page 5-2 © 1995 PEP Modular Computers May 20, 1996

PROFIBUS Layer 2 User’s Manual Chapter 5 Release Notes

20/01 /94:

OS9/PROFINET V3.1/I1.3

PROFIBUS V3.1/I1.3 on a VM30 or a (V)IUC can be used with the OS-9 Professional V2.4/I2.2.
OS-9/RAMNET V1.8 must be installed when using PROFIBUS V3.1/I1.3 on a VIUC as a VMEbus Slave.

Current edition numbers of PROFIBUS modules:

phyPROFI edition #15
drvPROFI edition #5
profiman edition #8
nfPROFI edition #2
comPROFI edition #8
modPBL7 edition #4
srvPBL7 edition #2

Major changes:

- The PROFIBUS implementation runs now also on a VM30 with a MC68030-CPU and installed OS9-module
"ssm". The following modules/files have now been changed:

nfPROFI
comPROFI
srvPBL7
modPBL7
pbL7llf.l

- Modifications in module phyPROFI (ed #15):
Automatic recognition of CPU frequency for MC68302 and external frequency on TIN1-PIN of MC68302
-> one PROFIBUS device descriptor for a VM30 or (V)IUC supports both variants:
 MC68302 on VM30: CPU frequency External frequency

16 MHz 12 MHz
20 MHz 24 MHz

 MC68302 on (V)IUC: CPU frequency External frequency
16.67 MHz 12 MHz
20 MHz 24 MHz

The entries "D_CPUFreq" and "D_EXTFreq" in the PROFIBUS device descriptor are ignored by the PROFIBUS driver.

- Modifications in module busPB (ed #2):
Values for bus parameters are changed according to the recommandations of the PNO

- Bug fixes in library pbL2hlf.l :
function "open_PROFI" returns now zero instead of the PROFIBUS station number, if no error occurred
function "close_PROFI" returns zero if no error occurred
-> the Layer 2 application examples are re-linked with the updated library

- Modification in file /PROFINET/ROM/VIUC/makefile:
"fpu" module is now included

May 20, 1996 © 1995 PEP Modular Computers Page 5-3

Chapter 5 Release Notes PROFIBUS Layer 2 User’s Manual

20/07 /94:

OS9/PROFINET V3.1/I1.4

PROFIBUS V3.1/I1.4 on a VM30 or a (V)IUC can be used with the OS-9 Professional V2.4/I2.2.
The OS-9/RAMNET V1.8 must be installed when using PROFIBUS V3.1/I1.4 on a VIUC as a VMEbus Slave.

Current edition numbers of PROFIBUS modules:

phyPROFI edition #16
drvPROFI edition #5
profiman edition #8
nfPROFI edition #2
comPROFI edition #8
modPBL7 edition #4
srvPBL7 edition #3

Major changes:

- Bug fix in library pbL7llf.l
- Application examples changes to Ultra-C notation

20/11 /94:

OS9/PROFINET V3.12/I1.0

PROFIBUS V3.12/I1.0 on VM30/(V)IUC or SMART-I/O can be used with OS-9 Professional V3.0.

Current edition numbers of PROFIBUS modules:

phyPROFI edition #17
drvPROFI edition #6
profiman edition #9
nfPROFI edition #2
comPROFI edition #9
modPBL7 edition #5
srvPBL7 edition #3

Major changes:

- Update of Profibus Layer 2 and 7 to V3.12
- Support of SMART-I/O

Note:

- Due to changes in Layer 2 and Layer 7 definition files and in libraries pbL2hlf.l and pbL7llf.l, applications must be
re-compiled. Modifications in source code are possibly necessary, because structure definitions for Layer 7 services
have been changed.

- Important modification in Layer 2:
use GLOBAL_ADDR instead of ALL, when all stations should be accessed.

Page 5-4 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix A Status Values
11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

A

APPENDIX A STATUS VALUES

The following list provides the “general” meanings of the status values. Where localization occurs, the deviations are
described in their respective service description sections.

Name Code Description

OK: 00 Positive confirmation that service(s) is carried out

UE: 01 Interface error

RR: 02 The partner did not have adequate operational resources

RS: 03 Partners service, access authorization or SAP, is not activated

HI: 05 update_status for SRD.ind: High priority reply data has been collected

LO: 06 update_status for SRD.ind: Low priority reply data has been collected

update_status for CSRD.con: Data has been transfered in reply telegram

DL: 08 For SRD and CSRD services:Reply Data low available, positive confirmation of data sent

NR: 09 For SRD and CSRD services: No Reply Data available, positive confirmation of data sent

DH: 10 For SRD and CSRD services: Reply Data high available, positive confirmation of data sent

RDL: 12 For SRD and CSRD services: Reply Data low available, negative confirmation of data sent

RDH: 13 For SRD and CSRD services: Reply Data high available, negative confirmation of data sent

LS: 16 Service or local Service Access Point not activated

NA: 17 Addressed partner does not respond

NLT: 18 Own station not in logical token ring or has left bus

NO: 19 update_status for SRD.ind: No reply data is transfered

update_status for CSRD.con: No reply data is transfered in reply telegram

LR: 20 No or insufficient operational resources are available locally

IV: 21 Invalid parameter in request

May 20, 1996 © 1995 PEP Modular Computers Page A.1

Appendix A Status Values Profibus Layer 2 User’s Manual

This page has been intentionally left blank

Page A-2 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix B Definition of Constants
11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

B

APPENDIX B DEFINITION OF CONSTANTS

The include data “pbL2con.h” contains all constants needed to call up layer 2 software.

The meanings of the constants are as described by their respective services.

/***
* *
* Include File pbL2con.h *
* *
* *
* The include file pbL2con.h contains all constants that the user needs *
* for programming LAYER2. *
* *
***/

/**
* *
* Edition History *
* =============== *
* *
* # Date Comments by *
* -- -------- --- ---- *
* 01 11/03/92 First written HAH *
* *
* 02 01/27/93 Added new service definition: HAH *
* #define FMA2_CHANGE_BUPARAMETER 0x1F*
* *
* 03 12/23/93 Added ident definition: HWE *
* #define _PBL2CON_HEADER_ and surrounding #ifndef *
* *
**/

#ifndef _PBL2CON_HEADER_/* include it only once */
#define _PBL2CON_HEADER_

May 20, 1996 © 1995 PEP Modular Computers Page B-1

Appendix B Definition of Constants Profibus Layer 2 User’s Manual

/* ---
+ +
+ Definition of Boolean Constants +
+ +
+ --- */

#define TRUE -1
#define FALSE 0

/* ---
+ +
+ Definition of the Service Primitives +
+ +
+ --- */

#define REQ 0
#define CON 1
#define IND 2

/* ---
+ +
+ Definition of Constants for the Length of FDL Telegram Header and +
+ FDL Telegram Trailer +
+ +
+ --- */

#define FDL_OFFSET11
#define FDL_TRAILER 2

/* ---
+ +
+ Definition of Constants for the Length of IDENT Telegram and +
+ LSAP Status Telegram +
+ +
+ --- */

#define IDENT_TELE_LEN255
#define LSAP_STATUS_TELE_LENFDL_OFFSET + FDL_TRAILER + 6

Page B-2 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix B Definition of Constants

/* ---
+ +
+ Definition of the Service Codes for FDL and FMA2 Services +
+ +
+ --- */

#define SDA 0x01
#define SDN 0x02
#define SRD 0x03
#define CSRD 0x04
#define LOAD_POLL_LIST0x05
#define DEACT_POLL_LIST0x06
#define POLL_ENTRY0x07
#define SEND_UPDATE0x08
#define REPLY_UPDATE0x09

#define FMA2_RESET 0x10
#define FMA2_SET_BUSPARAMETER 0x11
#define FMA2_SET_STATISTIC_CTR 0x12
#define FMA2_READ_BUSPARAMETER0x13
#define FMA2_READ_STATISTIC_CTR 0x14
#define FMA2_READ_TRR0x15
#define FMA2_READ_LAS0x16
#define FMA2_READ_GAPLIST0x17
#define FMA2_EVENT0x18
#define FMA2_IDENT0x19
#define FMA2_LSAP_STATUS0x1A
#define FMA2_LIVELIST0x1B
#define FMA2_ACTIVATE_SAP 0x1C
#define FMA2_ACTIVATE_RSAP 0x1D
#define FMA2_DEACTIVATE_SAP 0x1E
#define FMA2_CHANGE_BUSPARAMETER 0x1F

#define WAIT_FOR_FMA2_EVENT0x20
#define PUT_RESRC_TO_FDL0x21
#define WITHDRAW_RESRC_FROM_FDL0x22
#define WITHDRAW_EVENT0x23

May 20, 1996 © 1995 PEP Modular Computers Page B-3

Appendix B Definition of Constants Profibus Layer 2 User’s Manual

/* ---
+ +
+ Definition of Confirmation Status and Update Status of +
+ SRD-Indications and CSRD-Confirmations. +
+ +
+ --- */

#define OK 0x00
#define UE 0x01
#define RR 0x02
#define RS 0x03
#define HI 0x05
#define LO 0x06
#define DL 0x08
#define NR 0x09
#define DH 0x0a
#define RDL 0x0c
#define RDH 0x0d
#define LS 0x10
#define NA 0x11
#define NLT 0x12/* corresponds to status DS in DIN 19245 Teil 1 */
#define NO 0x13
#define LR 0x14
#define IV 0x15

/* ---
+ +
+ Definition of Broadcast SAP, Default SAP and FMA2 SAPs +
+ +
+ --- */

#define BRCT_SAP0x3F
#define DEFAULT_SAP 128

#define MSAP_0 0xF0
#define MSAP_1 0xF1
#define MSAP_2 0xF2

/* ---
+ +
+ Definition of Constant NO_SEGMENT (for component 'segment' in +
+ type T_FDL_ADDR) +
+ +
+ --- */

#define NO_SEGMENT0xFF

Page B-4 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix B Definition of Constants

/* ---
+ +
+ Definition of Constants for services FMA2_SET_BUSPARAMETER and +
+ FMA2_READ_BUSPARAMETER +
+ +
+ --- */

/* Baud rate -- */

#define K_BAUD_9_60
#define K_BAUD_19_21
#define K_BAUD_93_752
#define K_BAUD_187_53
#define K_BAUD_5004

/* Redundancy --- */

#define NO_REDUNDANCY 0
#define REDUNDANCY 1

/* ---
+ +
+ Definition of Constants for SAP Activation +
+ +
+ --- */

/* Service type --- */

#define SDA_RESERVED0x00
#define SDN_RESERVED0x01
#define SRD_RESERVED0x03
#define CSRD_RESERVED0x05

/* Role in Service -- */

#define INITIATOR0x00
#define RESPONDER0x10
#define BOTH_ROLES0x20
#define SERVICE_NOT_ACTIVATED0x30

/* ---
+ +
+ Definition of Service Class in Send Requests and Indications +
+ +
+ --- */

#define LOW 0
#define HIGH 1

May 20, 1996 © 1995 PEP Modular Computers Page B-5

Appendix B Definition of Constants Profibus Layer 2 User’s Manual

/* ---
+ +
+ Definition of Transmit Mode in Send Update Requests and Reply +
+ Update Requests +
+ +
+ --- */

#define SINGLE 0xF0
#define MULTIPLE0xF1

/* ---
+ +
+ ALL is Global Address and Confirm Mode in Poll List +
+ respectively Indication Mode in Responder SAP +
+ +
+ DATA is Confirm Mode in Poll List and Indication Mode +
+ in Responder SAP +
+ +
+ --- */

#define ALL 0xFF
#define GLOBAL_ADDR0x7F

#define DATA 0xF0

/* ---
+ +
+ Definition of Poll List Entry Marker State (Service POLL_ENTRY) +
+ +
+ --- */

#define UNLOCKED0x00
#define LOCKED 0x01

/* ---
+ +
+ Definition FMA2 events +
+ +
+ --- */

#define FMA2_FAULT_ADDRESS0x01/* Duplicate address recognized*/
#define FMA2_FAULT_TRANSCEIVER0x02/* Transceiver error occured*/
#define FMA2_FAULT_TTO0x03/* Time out on BUS detected*/
#define FMA2_FAULT_SYN0x04/* No receiver synchronization*/
#define FMA2_FAULT_OUT_OF_RING0x05/* Station out of ring*/
#define FMA2_GAP_EVENT 0x06/* New station in ring*/

#endif /*_PBL2CON_HEADER_*/

/* --------------------- END OF FILE ------------------------ */

Page B-6 © 1995 PEP Modular Computers May 20, 1996

PROFIBUS Layer 2 User’s Manual Appendix C Type Definitions

11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

C

APPENDIX C. TYPE DEFINITIONS

The definitions of the data types arriving at the communications interface are contained in the include data
“pbL2type.h”.

/***
* *
* Include File pbL2type.h *
* *
* *
* The include file pbL2type.h contains all structures that the user needs *
* for programming LAYER2. *
* *
***/

/**
* *
* Edition History *
* =============== *
* *
* # Date Comments by *
* -- -------- -- ---- *
* 01 11/03/92 First written HAH *
* *
* 02 01/27/93 T_FDL_SERVICE_DESCR extended for: HAH *
* "profiman" edition #7 *
* "phyPROFI" edition #10 *
* *
* 03 02/14/94 Added ident. define: HWE *
* #define _PBL2TYPE_HEADER_ and surrounding #ifndef*
* Modified structure definition T_FDL_SERVICE_DESCR: *
* previous:*
* USIGN8 far ** descr_ptr;*
* now:*
* void* descr_ptr;*
* *
* Modified structure definition T_FDL_SAP_DESCR: *
* previous:*
* USIGN8 far *sap_block_ptr;*
* now:*
* voidfar * sap_block_ptr;*
* *
**/

May 20, 1996 © 1995 PEP Modular Computers Page C-1

Appendix C Type Definitions PROFIBUS Layer 2 User’s Manual

#ifndef _PBL2TYPE_HEADER_ /* include if only once */
#define _PBL2TYPE_HEADER_

/* --- +
+ Definition of Base Types +
+ -- */

#define far
#define VOID void
#define BOOL char
#define INT8 char
#define INT16 short
#define USIGN8 unsigned char
#define USIGN16 unsigned short
#define USIGN32 unsigned long

/* --- +
+ Definition of LAYER2 Types +
+ -- */

typedef struct T_FDL_ADDR
{
USIGN8 station;
USIGN8 segment;
} T_FDL_ADDR;

typedef struct T_FDL_PDU
{
USIGN8 far * buffer_ptr;
USIGN8 length;
} T_FDL_PDU;

typedef struct T_FDL_SERVICE_DESCR
{
USIGN8 sap;
USIGN8 service;
USIGN8 primitive;
USIGN8 path_id;/* reserved for OS-9 PROFIBUS Manager */
USIGN16 user_id;
USIGN8 status;
void * descr_ptr;
struct T_FDL_SERVICE_DESCR far * next_descr;
struct T_FDL_SERVICE_DESCR far * link_descr;

/* reserved for OS-9 PROFIBUS Manager */
USIGN32 resrv;/* reserved for OS-9 PROFIBUS Manager */

/* currently not used */
} T_FDL_SERVICE_DESCR;

Page C-2 © 1995 PEP Modular Computers May 20, 1996

PROFIBUS Layer 2 User’s Manual Appendix C Type Definitions

/* -- */

typedef struct T_BUSPAR_BLOCK
{
T_FDL_ADDR loc_add;
USIGN8 baud_rate;
USIGN8 medium_red;
USIGN16 tsl;
USIGN16 min_tsdr;
USIGN16 max_tsdr;
USIGN8 tqui;
USIGN8 tset;
USIGN32 ttr;
USIGN8 g;
BOOL in_ring_desired;
USIGN8 hsa;
USIGN8 max_retry_limit;
USIGN8 far * ident;
USIGN8 ind_buf_len;
} T_BUSPAR_BLOCK;

/* -- */

typedef struct T_FDL_SAP_BLOCK
{
USIGN8 max_len_sda_req_low;
USIGN8 max_len_sda_req_high;
USIGN8 max_len_sda_ind_low;
USIGN8 max_len_sda_ind_high;
USIGN8 max_len_sdn_req_low;
USIGN8 max_len_sdn_req_high;
USIGN8 max_len_sdn_ind_low;
USIGN8 max_len_sdn_ind_high;
USIGN8 max_len_srd_req_low;
USIGN8 max_len_srd_req_high;
USIGN8 max_len_srd_con_low;
USIGN8 max_len_srd_con_high;
} T_FDL_SAP_BLOCK;

May 20, 1996 © 1995 PEP Modular Computers Page C-3

Appendix C Type Definitions PROFIBUS Layer 2 User’s Manual

typedef struct T_FDL_SAP_DESCR
{
USIGN8 sap_nr;
T_FDL_ADDR rem_add;
USIGN8 sda;
USIGN8 sdn;
USIGN8 srd;
USIGN8 csrd;
USIGN8 services;
void far * sap_block_ptr;
T_FDL_SERVICE_DESCR far * resrc_tail;
T_FDL_SERVICE_DESCR far * resrc_hdr;
USIGN8 resrc_ctr;
USIGN8 sema;
} T_FDL_SAP_DESCR;

typedef struct T_FDL_RSAP_BLOCK
{
USIGN8 indication_mode;
USIGN8 max_len_upd_req_low;
USIGN8 max_len_upd_req_high;
USIGN8 max_len_srd_ind_low;
USIGN8 max_len_srd_ind_high;
USIGN8 max_len_sdn_ind_low;
USIGN8 max_len_sdn_ind_high;
T_FDL_PDU upd_buf_low;
T_FDL_PDU upd_buf_high;
T_FDL_PDU telegram_low;
T_FDL_PDU telegram_high;
USIGN8 transmit_low;
USIGN8 transmit_high;
USIGN8 marker_low;
USIGN8 marker_high;
USIGN8 fcs_low;
USIGN8 fcs_high;
} T_FDL_RSAP_BLOCK;

typedef struct T_FDL_DEACT_SAP
{
USIGN8 ssap;
T_FDL_SAP_DESCR far *sap_descr_ptr;
} T_FDL_DEACT_SAP;

/* -- */

Page C-4 © 1995 PEP Modular Computers May 20, 1996

PROFIBUS Layer 2 User’s Manual Appendix C Type Definitions

typedef struct T_FDL_SR_BLOCK
{
T_FDL_ADDR loc_add;
USIGN8 remote_sap;
T_FDL_ADDR rem_add;
USIGN8 serv_class;
USIGN8 update_status;
T_FDL_PDU send_data;
T_FDL_PDU receive_data;
T_FDL_PDU resource;
} T_FDL_SR_BLOCK;

typedef struct T_FDL_UPDATE_BLOCK
{
USIGN8 dsap;
T_FDL_ADDR rem_add;
USIGN8 serv_class;
USIGN8 transmit;
T_FDL_PDU upd_data;
} T_FDL_UPDATE_BLOCK;

/* -- */

typedef struct T_POLL_LIST_ELEMENT
{
USIGN8 dsap;
T_FDL_ADDR rem_add;
USIGN8 max_len_csrd_req_low;
USIGN8 max_len_csrd_con_low;
USIGN8 max_len_csrd_con_high;
T_FDL_PDU poll_buffer;
T_FDL_PDU send_data;
T_FDL_SERVICE_DESCR far *resrc_hdr;
T_FDL_SERVICE_DESCR far *resrc_tail;
USIGN8 resrc_ctr;
T_FDL_SERVICE_DESCR far *next_for_rcv;
USIGN8 transmit;
USIGN8 to_send;
USIGN8 marker;
T_FDL_PDU poll_telegram;
T_FDL_PDU data_telegram;
USIGN8 data_fcs;
USIGN8 poll_fcs;
} T_POLL_LIST_ELEMENT;

typedef T_POLL_LIST_ELEMENT far * T_POLL_LIST_ELEM_PTR;

May 20, 1996 © 1995 PEP Modular Computers Page C-5

Appendix C Type Definitions PROFIBUS Layer 2 User’s Manual

typedef struct T_POLL_LIST_DESCR
{
USIGN8 len;
USIGN8 confirm_mode;
T_POLL_LIST_ELEM_PTR far *elem_ptr;
} T_POLL_LIST_DESCR;

typedef struct T_POLL_ENTRY
{
USIGN8 dsap;
T_FDL_ADDR rem_add;
USIGN8 marker;
} T_POLL_ENTRY;

/* -- */

typedef struct T_FDL_RESRC_DESCR
{
USIGN8 dsap;
T_FDL_ADDR rem_add;
USIGN8 nr_of_resources;
T_FDL_SERVICE_DESCR far *resrc_ptr;
} T_FDL_RESRC_DESCR;

/* -- */

typedef struct T_FDL_STATISTIC_CTR
{
USIGN32 frame_send_count;
USIGN16 retry_count;
USIGN32 sd_count;
USIGN16 sd_error_count;
} T_FDL_STATISTIC_CTR;

#endif /*_PBL2TYPE_HEADER_*/

/* ---------------------- END OF FILE ---------------------------*/

Page C-6 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples
11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

11111
11111
11111
11111
11111
11111

00000
00000
00000
00000
00000
00000

D

D. DEMO EXAMPLES

/* demo_M <dst_station> <sap>
* for example: demo_M 2 2
*!--!
*! !
*! Revision History: !
*! # Reason By Date !
*! --- -- --- -------- !
*! 1 Original HAH 11/20/92 !
*! Library functions from pbL2hlf are used. !
*! The function 'send_SRD ()' is used to send !
*! and reply data from a remote station. !
*! This application works in conjunction with !
*! the program 'demo_S' which must run on the !
*! remote station. !
*! For the VM30 we allocate memory for the !
*! output buffer in the TPRAM (colored memory), !
*! so the value for the "D_MemAcc" parameter !
*! could be set to zero in the device descriptor !
*! for the PROFIBUS device /profi_<x>. !
*! !
*!--!
*/

#include <stdio.h>
#include <errno.h>
#include <mem_pep.h>
#include <setsys.h>
#include <signal.h>
#include <time.h>

#include <pbL2con.h>
#include <pbL2type.h>
#include <pbL2hlf.h>

/* LOCAL DEFINES */

#define NUM_ARG 3 /* Number of task arguments */

#define NOT_DONE 0
#define DONE -1

#define TERMINATE goto TERMLBL
#define SEND_BUF_LEN 255
#define ERROR -1

May 20, 1996 © 1995 PEP Modular Computers Page D-1

Appendix D Demo Examples Profibus Layer 2 User’s Manual

/* FUNCTION_DECLARATIONS */

extern USIGN32 open_PROFI ();
extern USIGN32 close_PROFI ();
extern USIGN32 open_JOB ();
extern USIGN32 close_JOB ();
extern USIGN32 send_SRD ();

void signal_handler ();

JOB_DESCR Job_Descr [1];

USIGN8 Dst_Station;
USIGN8 Dst_SAP;
USIGN8 Src_SAP;

USIGN8 Flag_Signal;
USIGN32 Signal;

/* FUNCTIONAL_DESCRIPTION */

/*--*/
/* Function main (argc, argv) */
/* */
/*--*/

#ifdef _UCC
main(int argc, char **argv)
#else
main(argc, argv) int argc; char **argv;
#endif

{

JOB_DESCR *job_descr;

USIGN32 i;
USIGN32 input;
USIGN8 inchar;
USIGN8 * write_buf;
USIGN8 write_len;

USIGN8 * read_buf;
USIGN8 read_len;

USIGN8 * time_buf;
time_t time_tbl;

USIGN8 flag_open_profi, flag_open_job;
USIGN8 job_id;
USIGN32 status;
USIGN32 mem_type;

Page D-2 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

if (argc != NUM_ARG)
exit (E_PARAM);

/* -- */
/* - Get DESTINATION station and SAP - */
/* -- */

/* get destination station */
sscanf(argv[1],"%d",&input);
Dst_Station = (USIGN8) (input);

/* get SAP for source and destination station */
sscanf(argv[2],"%d",&input);
Src_SAP = (USIGN8) (input);
Dst_SAP = Src_SAP;

Flag_Signal = FALSE;

/*--*/
/* Install signal handler */
/*--*/

intercept(signal_handler);

/*--*/
/* Allocate memory for output buffer */
/*--*/

if (_getsys(D_MPUType,sizeof(D_MPUType)) == 68030)
mem_type = TPRAM;
else
mem_type = 0;

if ((write_buf = (USIGN8 *) srqcmem
(SEND_BUF_LEN * sizeof (USIGN8), mem_type)) == (USIGN8 *) ERROR)

{
status = ERROR;
TERMINATE;
}

/*--*/
/* Open PROFIBUS device */
/* IF error */
/* Goto TERMINATE */
/* ENDIF */
/*--*/

if ((status = open_PROFI ()) == ERROR)
TERMINATE;
flag_open_profi = DONE;

May 20, 1996 © 1995 PEP Modular Computers Page D-3

Appendix D Demo Examples Profibus Layer 2 User’s Manual

/*--*/
/* prepare entries in Job Descriptor: */
/* */
/* job_id: job_descr.job */
/* source SAP: job_descr.ssap */
/* destination SAP: job_descr.dsap */
/* number of IND buffer: job_descr.nr_indbuf */
/*--*/

job_descr = &Job_Descr[0];

job_descr->job_id = 0;
job_descr->ssap = Src_SAP;
job_descr->nr_indbuf = 0;

if ((status = open_JOB_S (job_descr)) != NULL)
TERMINATE;
flag_open_job = DONE;

/*--*/
/* MAIN loop begins here */
/*--*/

while (TRUE)
{
if (Flag_Signal)
{

errno = Signal;
status = ERROR;
TERMINATE;

}

 sleep (1);

/*--*/
/* Prepare buffer for output */
/*--*/

write_len = 26;
time (&time_tbl);
time_buf = (USIGN8 *) ctime(&time_tbl);

memcpy ((write_buf + FDL_OFFSET), time_buf, write_len);

/*--*/
/* prepare entries in Job Descriptor: */
/* */
/* remote station address: job_descr.remote_station */
/* send buffer: job_descr.send_buf */
/* send length: job_descr.send_len */
/* send class: job_descr.send_class */
/*--*/

Page D-4 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

job_id = 0;
job_descr = &Job_Descr[job_id];

job_descr->remote_station = Dst_Station;
job_descr->dsap = Dst_SAP;
job_descr->send_buf = write_buf;
job_descr->send_len = write_len;
job_descr->send_class = HIGH;

printf ("Send SRD to Job %d: ",job_id);
status = send_SRD (job_id);

if (status == ERROR) printf ("SYSTEM ERROR\n");
else
{

switch ((USIGN8)status)
{

case NULL: printf ("DONE\n");
break;

case RR: printf ("RETRY\n");
break;

case DH:
case DL: printf ("SRD DONE, Receive DATA available\n");

printf (" ");
job_descr = &Job_Descr[job_id];
read_buf = job_descr->rec_buf;
read_len = job_descr->rec_len;
for (i = 0; i < read_len; i++)
putchar(read_buf[i]);

break;

case RDH:
case RDL: printf ("SRD ERROR, Receive DATA available\n");

printf (" ");
job_descr = &Job_Descr[job_id];
read_buf = job_descr->rec_buf;
read_len = job_descr->rec_len;
for (i = 0; i < read_len; i++)
putchar(read_buf[i]);

break;

case NR: printf ("SRD DONE, NO Receive DATA available\n");
break;

default: printf ("ERROR status = %d\n",status);
}

}
} /* end: while (TRUE) */

May 20, 1996 © 1995 PEP Modular Computers Page D-5

Appendix D Demo Examples Profibus Layer 2 User’s Manual

TERMLBL:

if (flag_open_job == (USIGN8) DONE) close_JOB (job_id);
if (flag_open_profi == (USIGN8) DONE) close_PROFI();

if (status != ERROR)
errno = (status | 0x8000);

exit (errno);
}

/*--*/
/* Functionbody signal_handler (signal) */
/* */
/*--*/

#ifdef _UCC
void signal_handler (int signal)
#else
void signal_handler (signal) int signal;
#endif

{
Flag_Signal = TRUE;
Signal = signal;
return;
}

Page D-6 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

/* demo_S <dst_station> <sap>
* for example: demo_S 2 2
*!--!
*! !
*! Revision History: !
*! # Reason By Date !
*! --- -- --- -------- !
*! 1 Original HAH 20/DEC/92 !
*! Library functions from pbL2hlf are used. !
*! the function 'send_RPLUPD_S()' is used !
*! to send data to a remote station. !
*! This application works in conjunction with !
*! the program 'demo_M' which must run on the !
*! remote station. !
*! For the VM30 we allocate memory for the !
*! output buffer in the TPRAM (colored memory), !
*! so the value for the "D_MemAcc" parameter !
*! could be set to zero in the device descriptor !
*! for the PROFIBUS device /profi_<x>. !
*! !
*! 2 Toggle write buffer for function HAH 09/JUN/93 !
*! 'send_RPLUPD_S ()'. !
*! !
*!--!
*/

#include <stdio.h>
#include <errno.h>
#include <mem_pep.h>
#include <setsys.h>
#include <signal.h>
#include <time.h>

#include <pbL2con.h>
#include <pbL2type.h>
#include <pbL2hlf.h>

/* LOCAL DEFINES */

#define NUM_ARG 3 /* Number of task arguments */

#define NOT_DONE 0
#define DONE -1

#define TERMINATE goto TERMLBL
#define SEND_BUF_LEN 255
#define NR_OF_RESRC 0x2
#define ERROR -1

May 20, 1996 © 1995 PEP Modular Computers Page D-7

Appendix D Demo Examples Profibus Layer 2 User’s Manual

/* FUNCTION_DECLARATIONS */

extern USIGN32 open_PROFI ();
extern USIGN32 close_PROFI ();
extern USIGN32 open_JOB ();
extern USIGN32 close_JOB ();
extern USIGN32 send_RPLUPD_S ();
extern USIGN32 receive_IND ();
extern USIGN32 ready_IND ();
extern USIGN32 release_IND ();

void signal_handler (signal_code);

JOB_DESCR Job_Descr [1];

USIGN8 Dst_Station;
USIGN8 Dst_SAP;
USIGN8 Src_SAP;

USIGN8 Flag_Signal;
USIGN32 Signal;

/* FUNCTIONAL_DESCRIPTION */

/*--*/
/* Function main (argc, argv) */
/* */
/*--*/

#ifdef _UCC
main(int argc, char **argv)
#else
main(argc, argv) int argc; char **argv;
#endif

{

JOB_DESCR *job_descr;

USIGN32 i;
USIGN32 input;
USIGN8 inchar;
USIGN8 * write_buf;
USIGN8 write_len;
BOOL write_toggle;

USIGN8 * read_buf;
USIGN8 read_len;

USIGN8 * time_buf;
time_t time_tbl;

Page D-8 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

USIGN8 flag_open_profi, flag_open_job;
USIGN8 job_id;
USIGN32 status;
USIGN8 ind_service, ind_status;
USIGN32 mem_type;

if (argc != NUM_ARG)
exit (E_PARAM);

/* -- */
/* - Get DESTINATION station and SAP - */
/* -- */

/* get destination station */
sscanf(argv[1],"%d",&input);
Dst_Station = (USIGN8) (input);

/* get SAP for source and destination station */
sscanf(argv[2],"%d",&input);
Src_SAP = (USIGN8) (input);
Dst_SAP = Src_SAP;

Flag_Signal = FALSE;

/*--*/
/* Install signal handler */
/*--*/

intercept(signal_handler);

/*--*/
/* Allocate memory for output buffer */
/*--*/

if (_getsys(D_MPUType,sizeof(D_MPUType)) == 68030)
mem_type = TPRAM;
else
mem_type = 0;

if ((write_buf = (USIGN8 *) srqcmem
(SEND_BUF_LEN * 2 * sizeof (USIGN8), mem_type)) == (USIGN8 *) ERROR)

{
status = ERROR;
TERMINATE;
}

May 20, 1996 © 1995 PEP Modular Computers Page D-9

Appendix D Demo Examples Profibus Layer 2 User’s Manual

/*--*/
/* Open PROFIBUS device */
/* IF error */
/* Goto TERMINATE */
/* ENDIF */
/*--*/

if ((status = open_PROFI ()) == ERROR)
TERMINATE;
flag_open_profi = DONE;

/*--*/
/* prepare entries in Job Descriptor: */
/* */
/* job_id: job_descr.job */
/* source SAP: job_descr.ssap */
/* destination SAP: job_descr.dsap */
/* number of IND buffer: job_descr.nr_indbuf */
/*--*/

job_descr = &Job_Descr[0];

job_descr->job_id = 0;
job_descr->ssap = Src_SAP;
job_descr->nr_indbuf = NR_OF_RESRC;

if ((status = open_JOB_R_SRD (job_descr)) != NULL)
TERMINATE;
flag_open_job = DONE;

write_toggle = 0;

/*--*/
/* MAIN loop begins here */
/*--*/

while (TRUE)
{

if (Flag_Signal)
{

errno = Signal;
status = ERROR;
TERMINATE;

}

Page D-10 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

/*--*/
/* Prepare buffer for output */
/*--*/

time (&time_tbl);
time_buf = (USIGN8 *) ctime(&time_tbl);
write_len = 26;

memcpy ((write_buf + write_toggle * SEND_BUF_LEN + FDL_OFFSET),
time_buf, write_len);

/*--*/
/* prepare entries in Job Descriptor: */
/* */
/* remote station address: job_descr.remote_station */
/* send buffer: job_descr.send_buf */
/* send length: job_descr.send_len */
/* send class: job_descr.send_class */
/*--*/

job_id = 0;
job_descr = &Job_Descr[job_id];

job_descr->remote_station = Dst_Station;
job_descr->dsap = Dst_SAP;
job_descr->send_buf = write_buf + write_toggle * SEND_BUF_LEN;
job_descr->send_len = write_len;
job_descr->send_class = HIGH;

printf ("Send REPLY_UPDATE to Job %d: \n",job_id);

do
{

status = send_RPLUPD_S (job_id);
if (status == ERROR) TERMINATE;

} while (status);

write_toggle = (write_toggle + 1) & 0x01;

/*--*/
/* wait for SRD Indication */
/*--*/

status = receive_IND();
if (status == ERROR) TERMINATE;

else
{

job_id = (USIGN8) status;
job_descr = &Job_Descr[job_id];
read_buf = job_descr->ind_buf;
read_len = job_descr->ind_len;
ind_status = job_descr->status;
ind_service = job_descr->service;

May 20, 1996 © 1995 PEP Modular Computers Page D-11

Appendix D Demo Examples Profibus Layer 2 User’s Manual

printf ("Received SRD from Job %d, Update status = %d\n",
job_id,ind_status);

if ((ind_status == LO) || (ind_status == HI))
{

printf ("SRD Data: ",ind_status);
for (i = 0; i < read_len; i++)

putchar(read_buf[i]);
}

release_IND (job_id);
}

} /* end: while (TRUE) */

TERMLBL:

if (flag_open_job == (USIGN8) DONE) close_JOB (job_id);
if (flag_open_profi == (USIGN8) DONE) close_PROFI();

if (status != ERROR)
errno = (status | 0x8000);

exit (errno);
}

/*--*/
/* Functionbody signal_handler (signal) */
/* */
/*--*/

#ifdef _UCC
void signal_handler (int signal)
#else
void signal_handler (signal) int signal;
#endif

{
Flag_Signal = TRUE;
Signal = signal;
return;
}

Page D-12 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

/* sda_demo <PROFIBUS device_name> <own_station> <dst_station> <sap>
 for example: sda_demo /profi_1 1 2 3
!---!
! !
! Revision History: !
! # Reason By Date !
! --- --- --- -------- !
! 1 Original HAH 10/15/92 !
! NET-descriptor is used as a data module to !
! extract information about PROFIBUS device !
! and bus parameter !
! 2 Changed due to new structure of NET- HAH 12/03/92 !
! descriptor, NET-descriptor no longer !
! used. Bus parameters defined directly !
! in function "set_busparameter". !
! For the VM30 we allocate memory for the !
! output buffer in the TPRAM (colored memory), !
! so the value for the "D_MemAcc" parameter !
! could be set to zero in the device descriptor !
! for the PROFIBUS device /profi_<x>. !
! !
!---!
*/

@_sysedit: equ 2

#include <stdio.h>
#include <errno.h>
#include <mem_pep.h>
#include <setsys.h>
#include <signal.h>
#include <time.h>

#include <pbL2con.h>
#include <pbL2type.h>

/* LOCAL DEFINES */

#define NUM_ARG 0x05 /* Number of task arguments */

#define NOT_DONE 0
#define DONE -1

#define NO_WAIT_CON 0x00
#define WAIT_CON 0xff

#define TERMINATE goto TERMLBL
#define USR_BUF_LEN 242
#define IND_BUF_LEN 255
#define SEND_BUF_LEN 255
#define NR_OF_RESRC 0x2
#define ERROR -1

May 20, 1996 © 1995 PEP Modular Computers Page D-13

Appendix D Demo Examples Profibus Layer 2 User’s Manual

#define STDIN 0
#define STDOUT 1

/* FUNCTION_DECLARATIONS */

extern T_FDL_SERVICE_DESCR * fdl_con_ind ();
extern T_FDL_SERVICE_DESCR * fdl_con_ind_poll ();
extern USIGN32 fdl_req ();
extern USIGN32 fdl_open ();
extern USIGN32 fdl_close ();

void signal_handler (signal_code);

USIGN32 set_busparameter ();
USIGN32 activate_sap ();
USIGN32 deactivate_sap ();
USIGN32 put_resrc_to_sap ();
USIGN32 withdraw_resrc_from_sap ();
USIGN32 do_sda_ind (sdb_ptr);
USIGN32 alloc_service_mem ();
USIGN32 alloc_mem_for_service_descr ();
USIGN32 alloc_mem_for_buspar ();
USIGN32 alloc_mem_for_sap ();
USIGN32 alloc_mem_for_receive_data ();
USIGN32 alloc_mem_for_sda_req ();
VOID *memory_allocation (length);
VOID memory_deallocation (ptr);
VOID block_copy (source, desc, length);

USIGN32 WriteOutput (wr_buf, wr_len);
USIGN32 ReadInput (rd_buf, rd_len);

/* LOCAL_DATA */

char *dev_name;

/* init control flags */
BOOL flag_fdl_open; /* open PROFIBUS device done */
BOOL flag_put_resrc; /* service PUT_RESRC_TO_FDL done*/
BOOL flag_activate_sap; /* service FMA2_ACTIVATE_SAP done*/

/* flow control flags */
BOOL flag_signal; /* signal received */
BOOL flag_wait_resrccon;
BOOL flag_wait_sdacon;
int flag;

Page D-14 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

T_FDL_SERVICE_DESCR * sdb_ptr;
T_FDL_SERVICE_DESCR * usr_sdb_ptr;
T_FDL_SERVICE_DESCR * sda_sdb_ptr;
T_FDL_SERVICE_DESCR * resrc_sdb_ptr;
T_FDL_SERVICE_DESCR * rec_resrc_ptr;
T_FDL_SERVICE_DESCR * resrc_parklist[NR_OF_RESRC];
T_FDL_SERVICE_DESCR * withdr_resrc_sdb_ptr;
T_FDL_RESRC_DESCR * withdr_resrc_descr_ptr;
T_FDL_RESRC_DESCR * resrc_descr_ptr;
T_FDL_SAP_DESCR * sap_descr_ptr;
T_FDL_SAP_BLOCK * sap_block_ptr;
T_FDL_SR_BLOCK * send_sr_block;
T_FDL_SR_BLOCK * rec_sr_block;
T_BUSPAR_BLOCK * buspar_ptr;

struct RD_BUF_BLOCK
{

USIGN8 len;
T_FDL_SERVICE_DESCR *buffer_ptr;
struct RD_BUF_BLOCK * next_ptr;

};
typedef struct RD_BUF_BLOCK RD_BUF_BLOCK;
RD_BUF_BLOCK *rd_backup_ptr, *free_backup_ptr, *full_backup_ptr;

USIGN8 buffer [128];

USIGN8 * read_buf;
USIGN8 read_len;

USIGN8 * send_buf;
USIGN8 * write_buf;
USIGN8 write_len;

USIGN8 * time_buf;
time_t time_tbl;

USIGN8 resrc_cnt;

int signal;
int input;
char inchar;

USIGN8 own_station;
USIGN8 dst_station;

USIGN8 own_sap;
USIGN8 dst_sap;

May 20, 1996 © 1995 PEP Modular Computers Page D-15

Appendix D Demo Examples Profibus Layer 2 User’s Manual

/* FUNCTIONAL_DESCRIPTION */

/*--*/
/* Function main (argc, argv) */
/* */
/*--*/

main(argc, argv)
int argc;
char **argv;

{

int i;

if (argc != NUM_ARG)
exit (E_PARAM);

/* -- */
/* - Define SOURCE and DESTINATION station - */
/* -- */

 /* get source station */
 sscanf(argv[2],"%d",&input);
 own_station = (USIGN8) (input);
 /* get destination station */
 sscanf(argv[3],"%d",&input);
 dst_station = (USIGN8) (input);

 /* get SAP for source and destination station */
 sscanf(argv[4],"%d",&input);
 own_sap = (USIGN8) (input);
 dst_sap = own_sap;

dev_name = argv[1];

/*--*/
/* Predefine several flags */
/*--*/

flag_fdl_open = NOT_DONE;
flag_put_resrc = NOT_DONE;
flag_activate_sap = NOT_DONE;

flag_signal = FALSE;
flag_wait_resrccon = FALSE;
flag_wait_sdacon = FALSE;

Page D-16 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

/*--*/
/* Install signal handler */
/*--*/

intercept(signal_handler);

/*--*/
/* Open PROFIBUS device */
/* IF error */
/* Goto TERMINATE */
/* ENDIF */
/*--*/

if (fdl_open (dev_name) == -1)
TERMINATE;

flag_fdl_open = DONE;

if (alloc_service_mem () == ERROR)
TERMINATE;

if (set_busparameter () == ERROR)
TERMINATE;

if (activate_sap () == ERROR)
TERMINATE;

flag_activate_sap = DONE;

resrc_cnt = NR_OF_RESRC;
if (put_resrc_to_sap (WAIT_CON) == ERROR)
TERMINATE;

flag_put_resrc = DONE;

write_buf = &buffer[0];

/*--*/
/* MAIN loop begins here */
/*--*/

while (TRUE)
{
sleep (1);

time (&time_tbl);
time_buf = (USIGN8 *) ctime(&time_tbl);
write_len = 26;
block_copy (time_buf, write_buf, write_len);

May 20, 1996 © 1995 PEP Modular Computers Page D-17

Appendix D Demo Examples Profibus Layer 2 User’s Manual

if (flag_signal)
{

if (signal == SIGINT)
{

printf ("\nINPUT NEW LINE: ");
write_len = 0;
inchar = 0;
while (inchar != EOL)
{

inchar = getchar ();
buffer[write_len++] = inchar;

}
flag_signal = FALSE;

}
else

TERMINATE;
}

flag = ReadInput (read_buf, &read_len);
if (flag > NULL)
{

printf ("Read Input: ");
for (i = 0; i < read_len; i++)

putchar(read_buf[i]);
}
if (flag == ERROR) printf ("Read Input: ERROR\n");

flag = WriteOutput (write_buf,write_len);
if (flag == ERROR) printf ("Write Output: ERROR\n");
if (flag == NULL) printf ("Write Output: RETRY\n");
if (flag > NULL) printf ("Write Output: DONE\n");

} /* end: while (TRUE) */

TERMLBL:

/* if (flag_put_resrc == DONE) withdraw_resrc_from_sap (); */
if (flag_activate_sap == DONE) deactivate_sap ();
if (flag_fdl_open == DONE) fdl_close();

return (errno);
}

void signal_handler (signal_code)
 int signal_code;

Page D-18 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

/*--*/
/* Functionbody signal_handler (signal) */
/* */
/*--*/
{
flag_signal = TRUE;
signal = signal_code;
return;
}

/**
* *
* FMA2/FDL Service Functions: *
* *
* set_busparameter () *
* activate_sap () *
* deactivate_sap () *
* do_sda_ind () *
* put_resrc_to_sap () *
* withdraw_resrc_from_sap () *
* *
* WriteOutput () *
* ReadInput () *
* *
**/

USIGN32 set_busparameter ()

/*--
FUNCTIONAL_DESCRIPTION
This function fills the busparameter block with desired values and puts it
to layer2.
--*/
{

USIGN32 ret_val = NULL;

/* The following parameters are dependent on the selected baud rate */
/* ^^ */

buspar_ptr->loc_add.station = own_station;
buspar_ptr->loc_add.segment = NO_SEGMENT;
buspar_ptr->baud_rate = K_BAUD_187_5;

May 20, 1996 © 1995 PEP Modular Computers Page D-19

Appendix D Demo Examples Profibus Layer 2 User’s Manual

switch ((USIGN8) buspar_ptr->baud_rate)
{
case K_BAUD_500 :

buspar_ptr->tsl = 4000;
buspar_ptr->min_tsdr = 100;
buspar_ptr->max_tsdr = 2000;
buspar_ptr->tqui = 0;
buspar_ptr->tset = 50;
buspar_ptr->ttr = 50000;
buspar_ptr->g = 2;

break ;

case K_BAUD_187_5 :

buspar_ptr->tsl = 2000;
buspar_ptr->min_tsdr = 40;
buspar_ptr->max_tsdr = 1000;
buspar_ptr->tqui = 0;
buspar_ptr->tset = 20;
buspar_ptr->ttr = 25000;
buspar_ptr->g = 2;

break ;

case K_BAUD_93_75 :

buspar_ptr->tsl = 1000;
buspar_ptr->min_tsdr = 25;
buspar_ptr->max_tsdr = 500;
buspar_ptr->tqui = 0;
buspar_ptr->tset = 40;
buspar_ptr->ttr = 13000;
buspar_ptr->g = 2;

break ;

case K_BAUD_19_2 :

buspar_ptr->tsl = 400;
buspar_ptr->min_tsdr = 10;
buspar_ptr->max_tsdr = 200;
buspar_ptr->tqui = 0;
buspar_ptr->tset = 4;
buspar_ptr->ttr = 9000;
buspar_ptr->g = 2;

break ;

case K_BAUD_9_6 :
default :

buspar_ptr->tsl = 400;
buspar_ptr->min_tsdr = 20;
buspar_ptr->max_tsdr = 100;
buspar_ptr->tqui = 0;
buspar_ptr->tset = 2;
buspar_ptr->ttr = 5000;
buspar_ptr->g = 2;

break ;

Page D-20 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

}

buspar_ptr->hsa = 10;
buspar_ptr->medium_red = NO_REDUNDANCY;
buspar_ptr->in_ring_desired = TRUE;
buspar_ptr->max_retry_limit = 2;

buspar_ptr->ident[0] = 13;
buspar_ptr->ident[1] = 1;
buspar_ptr->ident[2] = 1;
buspar_ptr->ident[3] = 1;
buspar_ptr->ident[4] = 'P';
buspar_ptr->ident[5] = 'R';
buspar_ptr->ident[6] = 'O';
buspar_ptr->ident[7] = 'F';
buspar_ptr->ident[8] = 'I';
buspar_ptr->ident[9] = 'B';
buspar_ptr->ident[10] = 'U';
buspar_ptr->ident[11] = 'S';
buspar_ptr->ident[12] = ' ';
buspar_ptr->ident[13] = 'U';
buspar_ptr->ident[14] = 'S';
buspar_ptr->ident[15] = 'E';
buspar_ptr->ident[16] = 'R';
buspar_ptr->ident[17] = '1';
buspar_ptr->ident[18] = '1';
buspar_ptr->ident[19] = '1';
buspar_ptr->ind_buf_len = 0;

usr_sdb_ptr->sap = MSAP_0;
usr_sdb_ptr->service = FMA2_SET_BUSPARAMETER;
usr_sdb_ptr->primitive = REQ;
usr_sdb_ptr->descr_ptr = (USIGN8 *)buspar_ptr;

if (fdl_req(usr_sdb_ptr) == ERROR)

sdb_ptr = fdl_con_ind ();
if (((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL))
return (ERROR);

if ((sdb_ptr->status != OK) && (sdb_ptr != LR))
{
errno = E_PARAM;
return (ERROR);
}

return (ret_val);
}

May 20, 1996 © 1995 PEP Modular Computers Page D-21

Appendix D Demo Examples Profibus Layer 2 User’s Manual

USIGN32 activate_sap ()
/*---
FUNCTIONAL_DESCRIPTION
This function activates a sap for desired action. To activate a sap for
responding a SRD or CSRD request you need the function activate_rsap().
---*/

{

USIGN32 ret_val = 0;

(T_FDL_SAP_DESCR *) usr_sdb_ptr->descr_ptr = sap_descr_ptr;

usr_sdb_ptr->sap = MSAP_2;
usr_sdb_ptr->service = FMA2_ACTIVATE_SAP;
usr_sdb_ptr->primitive = REQ;

sap_descr_ptr->sap_nr = own_sap;
sap_descr_ptr->rem_add.station = dst_station;
sap_descr_ptr->rem_add.segment = NO_SEGMENT;

sap_block_ptr->max_len_sda_req_low = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_sda_req_high = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_sdn_req_low = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_sdn_req_high = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_srd_req_low = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_srd_req_high = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_sda_ind_low = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_sda_ind_high = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_sdn_ind_low = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_sdn_ind_high = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_srd_con_low = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);
sap_block_ptr->max_len_srd_con_high = IND_BUF_LEN - (FDL_OFFSET + FDL_TRAILER);

sap_descr_ptr->sda = BOTH_ROLES;
sap_descr_ptr->sdn = BOTH_ROLES;
sap_descr_ptr->srd = SERVICE_NOT_ACTIVATED;
sap_descr_ptr->csrd = SERVICE_NOT_ACTIVATED;

if (ret_val = fdl_req(usr_sdb_ptr) == ERROR)
return (ERROR);

sdb_ptr = fdl_con_ind ();
if (((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL))
return (ERROR);

if (sdb_ptr->status != OK)
{
errno = E_PARAM;
return (ERROR);
}

return(ret_val);
}

Page D-22 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

USIGN32 deactivate_sap ()

/*---
FUNCTIONAL_DESCRIPTION
This function deactivates a sap for desired action.
---*/
{

T_FDL_DEACT_SAP sap_deact;
T_FDL_DEACT_SAP *sap_deact_ptr;
USIGN32 ret_val = 0;

sap_deact_ptr = &sap_deact;
(T_FDL_DEACT_SAP *) usr_sdb_ptr->descr_ptr = sap_deact_ptr;

usr_sdb_ptr->sap = MSAP_2;
usr_sdb_ptr->service = FMA2_DEACTIVATE_SAP;
usr_sdb_ptr->primitive = REQ;

sap_deact_ptr->ssap = own_sap;

if (ret_val = fdl_req(usr_sdb_ptr) == ERROR)
return (ERROR);

while (TRUE)
{
sdb_ptr = fdl_con_ind ();
if (((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL))

return (ERROR);
if (sdb_ptr->service == FMA2_DEACTIVATE_SAP)

return(ret_val);
}

}

May 20, 1996 © 1995 PEP Modular Computers Page D-23

Appendix D Demo Examples Profibus Layer 2 User’s Manual

USIGN32 WriteOutput (wr_buf,wr_len)
USIGN8 *wr_buf;
USIGN8 wr_len;

/*---
FUNCTIONAL_DESCRIPTION
This function creates an SDA request by filling
 the T_FDL_SERVICE_DESCR block
 the T_FDL_SR_BLOCK
 the telegram buffer with desired message.

---*/

{

USIGN32 ret_val = NULL;

block_copy (wr_buf, &send_buf[FDL_OFFSET], wr_len);

sda_sdb_ptr->service = SDA;
sda_sdb_ptr->primitive = REQ;
sda_sdb_ptr->sap = own_sap;
sda_sdb_ptr->descr_ptr = (USIGN8 *)send_sr_block;

send_sr_block->rem_add.station = dst_station;
send_sr_block->remote_sap = dst_sap;
send_sr_block->rem_add.segment = NO_SEGMENT;
send_sr_block->serv_class = HIGH;
send_sr_block->send_data.length = wr_len;
send_sr_block->send_data.buffer_ptr = send_buf;

if ((ret_val = fdl_req(sda_sdb_ptr)) == ERROR)
return (ret_val);

flag_wait_sdacon = TRUE;

while (flag_wait_sdacon)
{
sdb_ptr = fdl_con_ind ();

if (((USIGN32) sdb_ptr != NULL) && ((USIGN32) sdb_ptr != -1))
{

if ((sdb_ptr->primitive == CON) && (sdb_ptr->service == SDA))
{

flag_wait_sdacon = FALSE;
if (sdb_ptr->status == OK) return (wr_len);

else /* sdb_ptr->status != OK */
{

if (sdb_ptr->status == RR) return (NULL);
else return (ERROR);

}
}

Page D-24 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

else
do_sda_ind (sdb_ptr);

}

else return (ERROR);

} /* end: while (flag_wait_sdacon) */

}

/*--
USIGN32 ReadInput ()

FUNCTIONAL_DESCRIPTION
This function handles an SDA or SDN indication by
 filling the provided buffer with the incoming message

---*/

USIGN32 ReadInput (rd_buf, rd_len)
USIGN8 *rd_buf;
USIGN8 *rd_len;

{

T_FDL_SERVICE_DESCR * sdb_ptr;
USIGN8 * buf;
USIGN8 len;
USIGN32 ret_val = NULL;

if (full_backup_ptr->len == NULL)
{
sdb_ptr = fdl_con_ind_poll ();

if (((USIGN32) sdb_ptr != NULL) && ((USIGN32) sdb_ptr != -1))
do_sda_ind (sdb_ptr);

else
return (NULL);

}

if (full_backup_ptr->len != NULL)
{
sdb_ptr = full_backup_ptr->buffer_ptr;
rec_sr_block = (T_FDL_SR_BLOCK *) sdb_ptr->descr_ptr;
buf = rec_sr_block->receive_data.buffer_ptr;
len = rec_sr_block->receive_data.length;

block_copy (buf, rd_buf, len);
full_backup_ptr->len = NULL;
full_backup_ptr = full_backup_ptr->next_ptr;

resrc_parklist[resrc_cnt++] = sdb_ptr;

if (put_resrc_to_sap (NO_WAIT_CON) == ERROR)
return (ERROR);

May 20, 1996 © 1995 PEP Modular Computers Page D-25

Appendix D Demo Examples Profibus Layer 2 User’s Manual

flag_wait_resrccon = TRUE;
while (flag_wait_resrccon)
{

sdb_ptr = fdl_con_ind ();

if (((USIGN32) sdb_ptr != NULL) && ((USIGN32) sdb_ptr != -1))
{

if (sdb_ptr->primitive == CON)
/* service = PUT_RESRC_TO_FDL */

{
if (sdb_ptr->status == OK)

flag_wait_resrccon = FALSE;
} /* end: service = PUT_RESRC_TO_FDL */

else /* primitive = IND */
do_sda_ind (sdb_ptr);

} /* end: if (sdb_ptr != NULL/-1) *
else

return(ERROR);
} /* end: while (flag_wait_resrc_con) */

rd_len[0] = len;
return (len);

} /* end: (full_backup_ptr->len != NULL) */

}

/*--
USIGN32 do_sda_ind ()

FUNCTIONAL_DESCRIPTION
This function handles an SDA indication

---*/

USIGN32 do_sda_ind (sdb_ind)
T_FDL_SERVICE_DESCR * sdb_ind;

{

USIGN32 ret_val = NULL;

rec_sr_block = (T_FDL_SR_BLOCK *) sdb_ind->descr_ptr;

free_backup_ptr->len = rec_sr_block->receive_data.length;
free_backup_ptr->buffer_ptr = sdb_ind;
free_backup_ptr = free_backup_ptr->next_ptr;

return (ret_val);
}

Page D-26 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

/*---

USIGN32 put_resrc_to_sap (wait_con)

FUNCTIONAL_DESCRIPTION
This function puts receive resources out of a list of allocated memory to the
activated sap
--*/

USIGN32 put_resrc_to_sap (wait_con)

USIGN8 wait_con;

{

T_FDL_SERVICE_DESCR * current_resrc_ptr;
USIGN8 i;
USIGN32 ret_val = NULL;

usr_sdb_ptr->sap = own_sap;
usr_sdb_ptr->service = PUT_RESRC_TO_FDL;
usr_sdb_ptr->primitive = REQ;

(T_FDL_RESRC_DESCR *)usr_sdb_ptr->descr_ptr= resrc_descr_ptr;

resrc_descr_ptr->nr_of_resources = resrc_cnt;

resrc_descr_ptr->dsap = dst_sap;
resrc_descr_ptr->rem_add.station = dst_station;
resrc_descr_ptr->rem_add.segment = NO_SEGMENT;

resrc_descr_ptr->resrc_ptr = resrc_parklist[0];
current_resrc_ptr = resrc_parklist[0];

i = 1;
while (i < resrc_cnt)
{
current_resrc_ptr->next_descr = resrc_parklist[i++];
current_resrc_ptr = current_resrc_ptr->next_descr;
}

current_resrc_ptr->next_descr = NULL;
resrc_cnt = 0;

if ((ret_val = fdl_req(usr_sdb_ptr)) == ERROR)
return (ERROR);

if (wait_con == WAIT_CON)
{
sdb_ptr = fdl_con_ind ();
if (((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL))

return (ERROR);

May 20, 1996 © 1995 PEP Modular Computers Page D-27

Appendix D Demo Examples Profibus Layer 2 User’s Manual

if (sdb_ptr->status != OK)
{

errno = E_PARAM;
return (ERROR);

}

}

return (ret_val);
}

/*---
FUNCTIONAL_DESCRIPTION
Withdraw resources from SAP
---*/

USIGN32 withdraw_resrc_from_sap ()

{

USIGN32 ret_val = NULL;

withdr_resrc_sdb_ptr->sap = own_sap;
withdr_resrc_sdb_ptr->service = WITHDRAW_RESRC_FROM_FDL;
withdr_resrc_sdb_ptr->primitive = REQ;

(T_FDL_RESRC_DESCR *)withdr_resrc_sdb_ptr->descr_ptr
=

withdr_resrc_descr_ptr;

withdr_resrc_descr_ptr->dsap =
dst_sap;
withdr_resrc_descr_ptr->rem_add.station = dst_station;
withdr_resrc_descr_ptr->rem_add.segment = NO_SEGMENT;

if ((ret_val = fdl_req(withdr_resrc_sdb_ptr)) == ERROR)
return (ERROR);

sdb_ptr = fdl_con_ind ();
if (((USIGN32) sdb_ptr == ERROR) || ((USIGN32) sdb_ptr == NULL))
return (ERROR);

return (ret_val);
}

Page D-28 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

/**
* *
* Memory Management Functions: *
* *
* alloc_service_mem () *
* alloc_mem_for_service_descr () *
* alloc_mem_for_buspar () *
* alloc_mem_for_sap () *
* alloc_mem_for_receive_data () *
* alloc_mem_for_sda_req() *
* *
**/

USIGN32 alloc_service_mem ()

/*--
FUNCTIONAL_DESCRIPTION
This function calls the memory allocation functions.
--*/
{

if (alloc_mem_for_service_descr () == -1) return (errno);
if (alloc_mem_for_buspar () == -1) return (errno);
if (alloc_mem_for_sap () == -1) return (errno);
if (alloc_mem_for_receive_data () == -1) return (errno);
if (alloc_mem_for_sda_req() == -1) return (errno);

return(NULL);
}

USIGN32 alloc_mem_for_service_descr ()
{

if ((usr_sdb_ptr = (T_FDL_SERVICE_DESCR *)
memory_allocation (sizeof (T_FDL_SERVICE_DESCR))) == NULL)
return (ERROR);
return (NULL);
}

USIGN32 alloc_mem_for_buspar ()
{

if ((buspar_ptr = (T_BUSPAR_BLOCK *)
memory_allocation (sizeof (T_BUSPAR_BLOCK))) == NULL)

return (ERROR);

if ((buspar_ptr->ident = (USIGN8 *)
memory_allocation(sizeof(USIGN8)*14)) == NULL)

return (ERROR);

return (NULL);
}

May 20, 1996 © 1995 PEP Modular Computers Page D-29

Appendix D Demo Examples Profibus Layer 2 User’s Manual

USIGN32 alloc_mem_for_sap ()
{

if ((sap_descr_ptr = (T_FDL_SAP_DESCR *)
memory_allocation (sizeof (T_FDL_SAP_DESCR))) == NULL)

return (ERROR);

if ((sap_block_ptr = (T_FDL_SAP_BLOCK *)
memory_allocation (sizeof (T_FDL_SAP_BLOCK))) == NULL)

return (ERROR);

sap_descr_ptr->sap_block_ptr = (USIGN8 *) sap_block_ptr;
return (NULL);
}

USIGN32 alloc_mem_for_receive_data ()
{

T_FDL_SR_BLOCK * sr_ptr;
USIGN8 * buf_ptr;
USIGN16 i;

if ((resrc_sdb_ptr = (T_FDL_SERVICE_DESCR *)
memory_allocation (sizeof (T_FDL_SERVICE_DESCR))) == NULL)

return (ERROR);

if ((resrc_descr_ptr = (T_FDL_RESRC_DESCR *) memory_allocation
(sizeof (T_FDL_RESRC_DESCR))) == NULL)

return (ERROR);

if ((withdr_resrc_sdb_ptr = (T_FDL_SERVICE_DESCR *)
memory_allocation (sizeof (T_FDL_SERVICE_DESCR))) == NULL)

return (ERROR);

if ((withdr_resrc_descr_ptr = (T_FDL_RESRC_DESCR *) memory_allocation
(sizeof (T_FDL_RESRC_DESCR))) == NULL)

return (ERROR);

if ((buf_ptr = memory_allocation (NR_OF_RESRC * IND_BUF_LEN)) == NULL)
return (ERROR);

if ((read_buf = memory_allocation (IND_BUF_LEN)) == NULL)
return (ERROR);

if ((sr_ptr = (T_FDL_SR_BLOCK *) memory_allocation
(NR_OF_RESRC * sizeof (T_FDL_SR_BLOCK))) == NULL)

return (ERROR);

if ((rec_resrc_ptr = (T_FDL_SERVICE_DESCR *) memory_allocation
(NR_OF_RESRC * sizeof (T_FDL_SERVICE_DESCR))) == NULL)

return (ERROR);

Page D-30 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

if ((rd_backup_ptr = (RD_BUF_BLOCK *) memory_allocation
(NR_OF_RESRC * sizeof (RD_BUF_BLOCK))) == NULL)

return (ERROR);

for(i = 0; i < NR_OF_RESRC; i++)
{
sr_ptr[i].resource.buffer_ptr = &buf_ptr[i * IND_BUF_LEN];
sr_ptr[i].resource.length = IND_BUF_LEN;
(T_FDL_SR_BLOCK *) rec_resrc_ptr[i].descr_ptr = &sr_ptr[i];
resrc_parklist[i] = &rec_resrc_ptr[i];
rd_backup_ptr[i].len = NULL;
if (i == (NR_OF_RESRC - 1))

rd_backup_ptr[i].next_ptr = &rd_backup_ptr[0];
else

rd_backup_ptr[i].next_ptr = &rd_backup_ptr[i+1];
}

free_backup_ptr = rd_backup_ptr;
full_backup_ptr = rd_backup_ptr;

return (NULL);
}

USIGN32 alloc_mem_for_sda_req ()
{
USIGN32 mem_type;

if ((sda_sdb_ptr = (T_FDL_SERVICE_DESCR *)
memory_allocation (sizeof (T_FDL_SERVICE_DESCR))) == NULL)

return (ERROR);

if ((send_sr_block = (T_FDL_SR_BLOCK *)
memory_allocation (sizeof (T_FDL_SR_BLOCK))) == NULL)

return (ERROR);

if (_getsys(D_MPUType,sizeof(D_MPUType)) == 68030)
mem_type = TPRAM;
else
mem_type = 0;

if ((send_buf = (USIGN8 *) srqcmem
(SEND_BUF_LEN * sizeof (USIGN8), mem_type)) == (USIGN8 *) ERROR)

return (ERROR);

send_sr_block->send_data.buffer_ptr = send_buf;

return (NULL);
}

May 20, 1996 © 1995 PEP Modular Computers Page D-31

Appendix D Demo Examples Profibus Layer 2 User’s Manual

VOID *memory_allocation (length)
USIGN16 length;

/**/
/* Functionbody memory_allocation (length) */
/* */
/* --> With the parameter "length" memory space willbe demanded */
/* */
/* --> The return value of the function is a pointer to the first */
/* Byte of the allocated memory */
/**/

{

USIGN8 *result;

result = (USIGN8 *) malloc(length);
return (result);
}

VOID memory_deallocation (ptr)
USIGN8 * ptr;

/**/
/* Functionbody memory_deallocation (ptr) */
/* */
/* --> The parameter "ptr" is a pointer to the first byte of */
/* memory space which will be deallocated by this function */
/**/

{

free((VOID *)ptr);

return;
}

Page D-32 © 1995 PEP Modular Computers May 20, 1996

Profibus Layer 2 User’s Manual Appendix D Demo Examples

/*--
FUNCTIONAL_DESCRIPTION
This function copies a given number of Bytes (length, 1-65535) from
the source_address to the destination_address.
--*/

VOID block_copy (source, dest, length)
register USIGN8 *source;
register USIGN8 *dest;
register USIGN16 length;

{

USIGN16 l;

for (l=0;l<length;l++)
{
dest[l] = source[l] ;
}

}

May 20, 1996 © 1995 PEP Modular Computers Page D-33

Appendix D Demo Examples Profibus Layer 2 User’s Manual

This page has been intentionally left blank

Page D-34 © 1995 PEP Modular Computers May 20, 1996

Artisan Technology Group is an independent supplier of quality pre-owned equipment

Gold-standard solutions
Extend the life of your critical industrial,

commercial, and military systems with our

superior service and support.

We buy equipment
Planning to upgrade your current

equipment? Have surplus equipment taking

up shelf space? We'll give it a new home.

Learn more!
Visit us at artisantg.com for more info

on price quotes, drivers, technical

specifications, manuals, and documentation.

Artisan Scientific Corporation dba Artisan Technology Group is not an affiliate, representative, or authorized distributor for any manufacturer listed herein.

We're here to make your life easier. How can we help you today?
(217) 352-9330 I sales@artisantg.com I artisantg.com

